Skip to main content
Log in

Investigation of dielectric relaxation in dipolar liquids

  • OriginalPaper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A graphical method has been used to evaluate the double relaxation time τ1 and τ2 for rotation of the flexible part and whole molecule of four butyl alcohols in p-xylene under 2.50 GHz (S-Band), 9.313 GHz (X-Band), 16.20 GHz (Ku-Band) and 23.98 GHz (K-Band) electric field at 25 °C using Fröhlich and Debye model. The fixed τ1 and τ2 obtained from graphical method at those frequencies agree well with the reported average τ’s. This reveals τ’s are independent of the electric field frequencies signifying the material properties of chemical systems in identical environment. This method is making no approximation, and the infinite number of solutions clearly shows that observation at one single frequency is not sufficient to determine the correct values of τ1 and τ2. The dipole moments µ1 and µ2 are measured at all the frequencies in terms of graphically obtained τ1 and τ2 and reported τ. Estimated penetration depth indicates development of a new simple and rapid sensor for determination of alcohol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L S Anderson, G B Gujda and S S Stuchly IEEE Trans. Instr. & Measur.35 13 (1986)

    Article  Google Scholar 

  2. YZ Wei and S Sridhar J. Chem. Phys. 99 3119 (1993)

    Google Scholar 

  3. W Guo, X Zhu, Y Liu and H Zhuang J. Food. Eng.97 275 (2010)

    Article  Google Scholar 

  4. K Grzybowska, S Capaccioli and M Paluch Adv. Drug. Deliv. Rev.100 158 (2016)

    Article  Google Scholar 

  5. A Algeria and J Colmenero Soft. Matter12 7709 (2016)

    Article  ADS  Google Scholar 

  6. N Saylanmak, A I Nielsen, N B Olsen, J C Dyre and K Niss J. Chem. Phys132 1 (2010)

    Google Scholar 

  7. K Asami Prog. Poly. Sci.27 1617 (2002)

    Article  Google Scholar 

  8. H Kim, J Kim and Y Eo IEEE. Trans. Microwave. Theory & Techs64 931 (2016)

    Google Scholar 

  9. M Y Onimisi and J T Ikyumbur Am. J. Condens. Matter. Phys.5 69 (2015)

    Google Scholar 

  10. Z Hogga, N Merzouk and M M Hafid, Bio Ceram. Dev. Appl.6 1 (2016)

    Google Scholar 

  11. S O Nelson Res. Agric. Eng.54 104 (2008)

    Article  Google Scholar 

  12. X Qi, J Zhou, Z Yue, Z Gui, L Li and S Buddhudu Adv. Funct. Mater.14 920 (2004)

    Article  Google Scholar 

  13. D E Khaled, N Novas, J A Gazaquez, R M Garcia and F M Agugliaro, Renew. Sustain. Energy Rev.66 556 (2016)

    Article  Google Scholar 

  14. T Vishwam, V Subramanian, D V Subbiah and V R K Murthy Mol. Phys. 106 95 (2008)

    Article  ADS  Google Scholar 

  15. P Debye, Chemical Catalogue (1929)

  16. H Frohliich, Theory of Dielectrics (Oxford: Oxford University Press) (1949)

    Google Scholar 

  17. J Crossley Can. J. Chem.49 712 (1971)

    Article  Google Scholar 

  18. A Mansingh and P Kumar J. Phys. Chem.69 4197 (1965)

    Article  Google Scholar 

  19. S Sahoo and S K Sit Ind. J. Pure Appl. Phys55 207 (2017)

    Google Scholar 

  20. A K Bansal, P J Singh and K S Sharma Ind. J. Pure Appl. Phys. 39 329 (2001)

    Google Scholar 

  21. S Sahoo and S K Sit Pramana. J. Phys.88 1 (2017)

    Article  ADS  Google Scholar 

  22. A K Jonscher, J. Mater. Sci.16 2037 (1981)

    Article  ADS  Google Scholar 

  23. S Sahoo and S K Sit Mater. Sci. Eng. B 163 31(2009).

    Article  Google Scholar 

  24. S Sahoo, T R Middya and S K Sit Indian J. Pure Appl. Phys.53 725 (2015)

    Google Scholar 

  25. M B R Murthy, R L Patil and D K Deshpande Indian J. Phys.63B 491 (1989)

    Google Scholar 

  26. S Sahoo and S K Sit, Can. J. Phys.94 1 (2016)

    Article  Google Scholar 

  27. A R Von Hippel Dielectric Properties and Waves (New York: Willey) (1954)

  28. K Dutta, A Karmakar, S K Sit and S Acharyya, J. Mol. Phys.128 161(2006)

    Google Scholar 

  29. N Ghosh, A Karmakar, S K Sit and S Acharyya Indian J. Pure Appl. Phys.38 574 (2000)

    Google Scholar 

  30. J Rumble, Hand book of Chemistry and Physics, 58 edn. (C.R.C Press) (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatadeb Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S. Investigation of dielectric relaxation in dipolar liquids. Indian J Phys 94, 17–29 (2020). https://doi.org/10.1007/s12648-019-01437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01437-3

Keywords

PACS Nos.

Navigation