Eigenvalue approach for generalized thermoelastic porous medium under the effect of thermal loading due to a laser pulse in DPL model

  • Mohamed I. A. OthmanEmail author
  • Ibrahim A. Abbas


The aim of the present study is concerned with the thermal loading due to laser pulse on thermoelastic porous medium under dual-phase-lag model DPL. The material is a homogeneous isotropic elastic half-space and heated by a non-Gaussian laser beam with the pulse duration of 8 ps. Eigenvalue approach is proposed to analyze the problem and obtain the analytical solutions of the displacement components, stresses, temperature distribution and change in the volume fraction field. The results of the physical quantities have been illustrated graphically by the comparison between the coupled theory, DPL model and Lord–Shulman theory of the certain value of time and distance. The results presented in this article should prove useful for researchers in material science (porous media), designers of new materials, physicists as well as for those working on the development of heat laser pulse practical situations as in geophysics, optics, acoustics and geomagnetic.


Generalized thermoelastic Laser pulse Porous medium DPL model Eigenvalue approach 


44.05.+e 81.40.Jj 62.20. fq 62.20.Dc 62.40.+i 



  1. [1]
    M A Biot J. Appl. Phys. 27 240 (1956).Google Scholar
  2. [2]
    H W Lord and Y A Shulman J. Mech. Phys. Solids 15 299 (1967).ADSCrossRefGoogle Scholar
  3. [3]
    A E Green and K A Lindsay J. Elast. 2 1 (1972).CrossRefGoogle Scholar
  4. [4]
    D Y Tzou Macro- to Micro Scale Heat Transfer: The Lagging Behavior, 1st edn (Washington: Taylor & Francis) (1996)Google Scholar
  5. [5]
    I A Abbas and A M Zenkour J. Comput. and Theor. Nanosci. 11 642 (2014)CrossRefGoogle Scholar
  6. [6]
    M I A Othman, W M Hasona and E M Abd-Elaziz Can. J. Phys. 92 148 (2014)ADSGoogle Scholar
  7. [7]
    H M Al-Qahtani and S K Datta J. Therm. Stress. 31 569 (2008)CrossRefGoogle Scholar
  8. [8]
    A M Abd-Alla, M I.A. Othman and S M Abo-Dahab Comput. Mater. Control 51 63 (2016)Google Scholar
  9. [9]
    M I A Othman and M Marin Results Phys. 7 3863 (2017)ADSCrossRefGoogle Scholar
  10. [10]
    M A Goodmann and S C Cowin Arch. Ration. Mech. Anal. 44 249 (1972).CrossRefGoogle Scholar
  11. [11]
    J W Nunziato and S C Cowin Arch. Ration. Mech. Anal. 72 175 (1979).CrossRefGoogle Scholar
  12. [12]
    S C Cowin and J W Nunziato J. Elast. 13 125 (1983).CrossRefGoogle Scholar
  13. [13]
    D Iesan Acta Mech 60 67 (1986).Google Scholar
  14. [14]
    I A Abbas and R Kumar J. Comput. and Theor. Nanosci. 11 1472 (2004)CrossRefGoogle Scholar
  15. [15]
    M I A Othman and E E M Eraki, Multi. Model. Mater. Struct. 14 457 (2018)CrossRefGoogle Scholar
  16. [16]
    M I A Othman and E R M Edeeb J. Comput. Theor. Nanosci. 13 294 (2016).CrossRefGoogle Scholar
  17. [17]
    M I A Othman and E M Abd-Elaziz J. Therm. Stress. 38 1068 (2015).CrossRefGoogle Scholar
  18. [18]
    M Marin and A Oechsner, Contin. Mech. Thermodyn. 29 1365 (2017).ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M Marin Meccanica 51 1127 (2016).Google Scholar
  20. [20]
    M Marin Acta Mechanica 122 155 (1997).Google Scholar
  21. [21]
    M Hassan, M Marin, A Alsharif and R Ellahi Phys. Lett. A 382 2749 (2018).ADSCrossRefGoogle Scholar
  22. [22]
    C Fetecau, R Ellahi, M Khan and N A Shah J. Porous Media 21 589 (2018)CrossRefGoogle Scholar
  23. [23]
    R Ellahi, M Raza and N S Akbar J. Porous Media 20 461 (2017).CrossRefGoogle Scholar
  24. [24]
    M M Bhatti, A Zeeshan, R Ellahi and G C Shit Adv. Powder Technol. 29 1189 (2018).CrossRefGoogle Scholar
  25. [25]
    K M Shirvan, M Mamourian, S Mirzakhanlari, R Ellahi and K Vafai Int. J. Heat Mass Transf. 105 811 (2017).CrossRefGoogle Scholar
  26. [26]
    S Z Alamri, R Ellahi, N Shehzad and A Zeeshan J. Mol. Liq., 273 292 (2019).Google Scholar
  27. [27]
    M Sheikholeslami Comput. Methods Appl. Mech. Eng. 344 306 (2019).Google Scholar
  28. [28]
    M Sheikholeslami, S A Shehzad, Z Li and A Shafee Int. J. Heat Mass Transf. 127 614 (2018).CrossRefGoogle Scholar
  29. [29]
    M Sheikholeslami, J. Mol. Liq. 265 347 (2018).CrossRefGoogle Scholar
  30. [30]
    M Sheikholeslami, S A Shehzad, F M Abbasi and Z Li, Comput. Methods Appl. Mech. Eng. 338 491 (2018).ADSCrossRefGoogle Scholar
  31. [31]
    I A Abbas Comput. Math. Appl. 68 2036 (2014).Google Scholar
  32. [32]
    I A Abbas J. Mech. Sci. Tech. 28 4193 (2014).Google Scholar
  33. [33]
    M I A Othman and IA Abbas J. Comput. and Theor. Nanosci. 12 2399 (2015).Google Scholar
  34. [34]
    I A Abbas J. Magn. and Magn. Mater. 377 452 (2015).Google Scholar
  35. [35]
    R S Dhaliwal and A Singh Dynamic Coupled Thermoelasticity (New Delhi: Hindustan Publ. Corp.) (1980)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of MathematicsZagazig UniversityZagazigEgypt
  2. 2.Department of MathematicsSohag UniversitySohagEgypt
  3. 3.Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations