Analysis of 90° bend photonic crystal waveguide: an application to optical interconnect

  • Partha Sarkar
  • Abinash Panda
  • G. PalaiEmail author
Original Paper


In this research, we propose and analyse a two-dimensional photonic crystal having L-shaped bend waveguide to realise a negligible bending loss, nonlinearity and confinement loss at the signal of 1.31 μm and 1.55 μm. The proposed waveguide comprises 9 × 9 circular dielectric rods of silicon with air as background material. Further, finite-difference time-domain method is employed for analysing electric field distribution in order to realise effective area as well as high transmission characteristics of the proposed waveguide. Moreover, numerical formulations are used for simulation of bending loss, nonlinearity and confinement loss in the waveguide with suitable structure parameters (diameter of circular rods, nature of the material, lattice spacing). Again, simulation results revealed that ultra-low bending loss of 0.72 × 10−7 dB/m and 0.93 × 10−7 dB/m is experienced by the waveguide at wavelengths 1.31 μm and 1.55 μm, respectively, for 10 nm diameter of the circular rod, whereas a feeble nonlinearity of 0.085 W−1 km−1 and 0.072 W−1 km−1 is also asserted in the same. Furthermore, simulation outcomes proclaimed a negligible confinement loss of 5.7 × 10−11 and 4.8 × 10−11 for the said wavelengths. Finally, this article discloses that the projected silicon-based photonic crystal waveguide appears to be an apt candidate as optical interconnects for application in photonic integrated circuits.


2D photonic crystal waveguide FDTD Electric field distribution Bending loss Nonlinearity 


02.70.Bf 42.70.Qs 42.79.Gn 



  1. [1]
    B Singh and G Palai Optik-IJLEO. 157 804 (2018)ADSGoogle Scholar
  2. [2]
    G Palai and T K Dhir Opt.-IJLEO. 126 478 (2015)ADSGoogle Scholar
  3. [3]
    D Paul, R Biswas and N S Bhattacharyya Opt. Mater. 48 110 (2015)ADSCrossRefGoogle Scholar
  4. [4]
    J C Baggett, T M Monro, K Furusawa, V Finazzi and D J Richardson Opt. Commun. 227 317 (2003)ADSCrossRefGoogle Scholar
  5. [5]
    T A Birks, J C Knight and P St J Russell Opt. Lett. 22 961 (1997)ADSCrossRefGoogle Scholar
  6. [6]
    A Bellemare, M Karbsek, C Riviere, F Babin, G He, V Roy and G W Schinn IEEE J. Sel. Top. Quantum Electron 7 22 (2001)ADSCrossRefGoogle Scholar
  7. [7]
    H Han, H Park, M Cho and J Kim Appl. Phys. Lett. 80 2634 (2002)ADSCrossRefGoogle Scholar
  8. [8]
    A H Aly and A Mehaney Indian J. Phys. 91 1021 (2017)ADSCrossRefGoogle Scholar
  9. [9]
    J Zimmermann, M Kamp, A Forchel and R Marz Opt. Commun. 230 387 (2004)ADSCrossRefGoogle Scholar
  10. [10]
    S H Jeong, N Yamamoto, J Sugisaka, M Okano and K Komori J. Opt. Soc. Am. B 24, 1951 (2007)ADSCrossRefGoogle Scholar
  11. [11]
    I Kaminow, T Li, A Willner (2008) Optical Fiber Telecommunications: Systems and Networks, Vol 5. (Amsterdam: Elsevier) 928Google Scholar
  12. [12]
    N Muduli and G Palai, Opt.- IJLEO 125 7116 (2014)ADSGoogle Scholar
  13. [13]
    S K Biswal and G Palai Opt.- IJLEO 166 86 (2018)ADSGoogle Scholar
  14. [14]
    G Palai and S K Tripathy Opt.- IJLEO 125 2875 (2014)Google Scholar
  15. [15]
    C-Y Liu, and L-W Chen Opt. Express 12 2616 (2004)ADSCrossRefGoogle Scholar
  16. [16]
    N Fukaya, D Ohsaki, and T Baba Jpn. J. Appl. Phys. 39 2619 (2000)ADSCrossRefGoogle Scholar
  17. [17]
    K Rauscher, D Erni, J Smajic, and Ch Hafner Progress in Electromagnetic Research Symposium 25 (2004)Google Scholar
  18. [18]
    Y Naka and H Ikuno Turk J. Electron. Eng. 10 245 (2002)Google Scholar
  19. [19]
    A Mekis, J C Chen, I Kurland, S Fan, P R Villeneuve and J D Joannopoulos Phys. Rev. Lett. 77 3787 (1996)ADSCrossRefGoogle Scholar
  20. [20]
    Z Wang, C-L Zhao, S Z Jin Opt. Fiber Technol. 19 213 (2013)ADSCrossRefGoogle Scholar
  21. [21]
    Z. Wang et al., Opt. Fiber Technol. 19 671 (2013)ADSCrossRefGoogle Scholar
  22. [22]
    X Wang, S Lou and W Lu IEEE Photonics J. 5 7100408 (2013)ADSCrossRefGoogle Scholar
  23. [23]
    S Kabir, M R H Khandokar, M Abdul, G Khan, Opt. Laser Technol. 81 84 (2016)ADSCrossRefGoogle Scholar
  24. [24]
    M F H Arif, M J H Biddut Sens. Bio-Sens. Res. 12 8 (2017)CrossRefGoogle Scholar
  25. [25]
    K Yee (1966) IEEE Trans. Antennas Propag. 14 302 (1966)ADSCrossRefGoogle Scholar
  26. [26]
    S F Kaijage, Z Ouyang and X Jin (2013) IEEE Photonics Technol. Lett. 25 1454–1457ADSCrossRefGoogle Scholar
  27. [27]
    M D Nielsen, N A Mortensen, M Albertsen, J R Folkenberg, A Bjarklev and D Bonacinni Opt. Express 12 1775 (2004)ADSCrossRefGoogle Scholar
  28. [28]
    S Kabir, S M A Razzak Photonics Nanostruct. Fundam. Appl. 30 1 (2018)ADSCrossRefGoogle Scholar
  29. [29]
    Y E Monfared, A R M Javan, A R M Kashani (2013) Opt.-IJLEO 124 7049ADSCrossRefGoogle Scholar
  30. [30]
    T Yajima et al. Opt. Express 21 30500 (2013)ADSCrossRefGoogle Scholar
  31. [31]
    T Yajima, J Yamamoto, F Ishii, T Hirooka, M Yoshida and M Nakazawa (2013) Opt. Express 21 30500 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Biju Patnaik University of TechnologyRourkelaIndia
  2. 2.Gandhi Institute for Technological Advancement (GITA)BhubaneswarIndia

Personalised recommendations