Skip to main content

CeOs4As12: a hybridized gap semiconductor

Abstract

The ground-state electronic properties of CeOs4As12 have been investigated within the framework of full-potential linearized augmented plane wave method. The effect of exchange correlation functional treated with GGA depicts a zero band gap semiconducting behavior, which turns to open an energy gap of 0.04 eV with inclusion of mBJ potential in the calculation. The presence of strong hybridization of Ce-f electronic states with conduction electrons predominates overall electronic profile, where the effects of spin polarization and localized electrons are also dominated. The brittle nature with the presence of ionic type of interatomic bonding has been observed for this material, whose hardness is also comparable to analogous Ce-filled skutterudites. The sample alloy possesses high reflectivity as evident from optical response, and the absorption coefficient increases dramatically beyond the visible spectral range that determines its optoelectronic applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. M Matsunami, H Okamura, T Nanba, H Sugawara and H Sato J. Magn. Magn. Mater. 41 272 (2004)

    Google Scholar 

  2. S Benalia, M Hachemaoui, D Rached, R Khenata, N Bettahar and M Benyahia J. Phys. Chem. Solids 70 622 (2009)

    ADS  Article  Google Scholar 

  3. M Matsunami, H Okamura, K Senoo, S Nagano, C Sekine, I Shirotani, H Sugawara, H Sato and T Nanba J. Phys. Soc. Jpn. 77 315 (2008)

    ADS  Article  Google Scholar 

  4. R E Baumbach, P C Ho, T A Sayles, M B Maple, R Wawryk, T Cichorek, A Pietraszko and Z Henkie J. Phys. Condens. Matter 20 075110 (2008)

    ADS  Article  Google Scholar 

  5. D J Singh and W E Pickett Phys. Rev. B 50 11235 (1994)

    ADS  Article  Google Scholar 

  6. D J Braun and W Jeitschko J. Solid State Chem. 32 357 (1980)

    ADS  Article  Google Scholar 

  7. C Sekine, T Uchiumi, I Shirotani and T Yagi Phys. Rev. Lett. 79 3218 (1997)

    ADS  Article  Google Scholar 

  8. N R Dilley, E J Freeman, E D Bauer and M B Maple Phys. Rev. B 58 6287 (1998)

    ADS  Article  Google Scholar 

  9. N Takeda and M Ishikawa Physica B 259–261 92 (1999)

    ADS  Article  Google Scholar 

  10. M S Torikachvili, C Rossel, M W McElfresh, M B Maple, R P Guertin and G P Meisner J. Magn. Magn. Mater. 54–57 365 (1986)

    ADS  Article  Google Scholar 

  11. I Shirotani, T Uchiumi, K Ohno and C Sekine Phys. Rev. B 56 7866 (1997)

    ADS  Article  Google Scholar 

  12. E D Bauer, A Slebarski, N A Frederick, W M Yuhasz, M B Maple, D Cao, F Bridges, G Giester and P Rogl J. Phys. Condens. Matter 16 5095 (2004)

    ADS  Article  Google Scholar 

  13. L Nordstrom and D J Singh Phys. Rev. B 53 1103 (1996)

    ADS  Article  Google Scholar 

  14. B C Sales in Handbook on the Physics and Chemistry of Rare Earths: Filled Skutterudites (eds.) K A Gschneidner (Elsevier: New York) Vol 33 Chap 211 p 1 (2003)

  15. C Uher in Recent Trends in Thermoelectric Materials Research I, Semiconductors and Semimetals (ed.) Tritt T M (Academic Press: New York) Vol 69 p 139–253 (2001)

    Chapter  Google Scholar 

  16. G S Nolas, D T Morelli and T M Tritt Annu. Rev. Mater. Sci. 29 89 (1999)

    ADS  Article  Google Scholar 

  17. S Benalia, M Ameri, D Rached, R Khenata, M Rabah and A Bouhemadou Comp. Mat. Sci. 43 1022 (2008)

    Article  Google Scholar 

  18. S V Dordevic, N R Dilley, E D Bauer, D N Basov, M B Maple and L Degiorgi Phys. Rev. B 60 11321 (1999)

    ADS  Article  Google Scholar 

  19. A Shankar, P K Mandal and R K Thapa J. Mater. Sci. 52 1511 (2017)

    ADS  Article  Google Scholar 

  20. R E Baumbach, P C Ho, T A Sayles, M B Maple, R Wawryk, T Cichorek, A Pietraszko, and Z Henkie Proceedings of the National Academy of Sciences of the United States of America 105 17307 (2008)

    ADS  Article  Google Scholar 

  21. C Sekine, R Abe, K Takeda, K Matsuhira and M Wakeshima Phys. B 403 856 (2008)

    ADS  Article  Google Scholar 

  22. T Cichorek, L Bochenek, R Wawryk, and Z Henkie Phys. Status Solidi B 250 646 (2013)

    ADS  Article  Google Scholar 

  23. H Sato, H Sugawara, Y Aoki, and H Harima, Handbook of Magnetic Materials 18 1 (2009)

    Google Scholar 

  24. M Yogi, N Higa, H Niki, T Kawata and C Sekine Journal of Physics: Conference Series 683 01203 (2016)

    Google Scholar 

  25. B Yan, L Muchler, X-L Qi, S-C Zhang, and C Felser Phys. Rev. B 85 165125 (2012)

    ADS  Article  Google Scholar 

  26. P Blaha, K Schwarz, G Madsen, D Kvasnicka and J Luitz An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Wien: Tech. Universitat Wien Austria) (2014)

    Google Scholar 

  27. F D Murnaghan Proc. Natl. Acad. Sci. USA 30 244 (1944)

    ADS  Article  Google Scholar 

  28. M Ameri, B Abdelmounaim, M Sebane, R Khenata, D Varshney, B Bouhafs and I Ameri Mol. Simulat. 40 1 (2014)

    Article  Google Scholar 

  29. R Khenata, A Bouhemadou, A H Rashek, A Rashid, B Bouhafs, D Rached, Y Al-Douri and M Rerat Phys. Rev. B 75 195131 (2007)

    ADS  Article  Google Scholar 

  30. M Berrahal, M Ameri, Y Al-Douri, U Hashim, D Varshney, I Ameri, M Boubchir and B Abderrahim Materials Science-Poland 33 699 (2015)

    ADS  Article  Google Scholar 

  31. M Ameri, A Slamani, B Abidri, I Ameri, Y Aldouri, B Bouhafs, D Varshney, A Adjadj and N Louahala Mat. Sci. Semicon. Proc. 27 368 (2014)

    Article  Google Scholar 

  32. M Ameri, K Boudia, R Khenata, B Bouhafs, A Rais, S Bin Omran, B Abidri and Y Al-Douri Mater. Sci. Semicond. Process. 16 1508 (2013)

    Article  Google Scholar 

  33. M Hachemaoui, R Khenata, A Bouhemadou, A H Reshak, D Rached and F Semari Curr. Opin. Solid State Mater. Sci. 13 105 (2009)

    ADS  Article  Google Scholar 

  34. A Shankar, D P Rai, C Sandeep, J Maibam and R K Thapa Ind. J. Phys. 89 797 (2015)

    Article  Google Scholar 

  35. S F Pugh Philos. Mag. 45 823 (1954)

    Article  Google Scholar 

  36. R Wawryk, Z Henkie, A Pietraszko, T Cichorek, L Kȩpiński, A Jezierski, J Kaczkowski, R E Baumbach and M B Maple Phys. Rev. B 84 165109 (2011)

    ADS  Article  Google Scholar 

  37. K Takegahara, H Harima, Y Kaneta and A Yanase J. Phys. Soc. Jpn. 62 2103 (1993)

    ADS  Article  Google Scholar 

  38. J O Sofo and G D Mahan Phys. Rev. B 58 15620 (1998)

    ADS  Article  Google Scholar 

  39. K Kanai, N Takeda, S Nozawa, T Yokoya, M Ishikawa and S Shin Phys. Rev. B 65 041105(R) (2002)

    ADS  Article  Google Scholar 

  40. H Harima and K Takegahara J. Phys. Condens. Matter 15 S2081 (2003)

    ADS  Google Scholar 

  41. C Sekine, N Hoshi, K Takeda, T Yoshida, I Shirotani, K Matsuhira, M Wakeshima and Y Hinatsu J. Magn. Magn. Mater. 310 260 (2007)

    ADS  Article  Google Scholar 

  42. F Tran and P Blaha Phys. Rev. Lett. 102 22640 (2009)

    Google Scholar 

  43. R B Araujo, J S de Almeida and A F da Silva J. Appl. Phys. 114 183702 (2013)

    ADS  Article  Google Scholar 

  44. W Al-Sawai, H Lin, R S Markiewicz, L A Wray, Y A Xia, S Y Xu, M Z Hasan and A Bansil Phys. Rev. B 82 125208 (2010)

    ADS  Article  Google Scholar 

  45. A Shankar, D P Rai, C Sandeep, R Khenata and R K Thapa Phase Trans. 88, 1062 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges a research Grant (YSS/2015/001101) from DST-SERB, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shankar, A., Chaki, T., Barman, N. et al. CeOs4As12: a hybridized gap semiconductor. Indian J Phys 93, 1419–1425 (2019). https://doi.org/10.1007/s12648-019-01405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01405-x

Keywords

  • DFT
  • Elastic properties
  • Filled skutterudite
  • Optical absorption
  • Band structure

PACS Nos.

  • 31.15.A-
  • 78.20.Ci
  • 31.15.-p
  • 62.20.F-