Evaluation of the nuclear excitation functions of fast neutron-induced reactions on 52Cr and 56Fe isotopes

Abstract

In this article, we present the nuclear excitation functions of the fast neutron-induced reactions 52Cr(n,p)52V, 52Cr(n,α)49Ti, 52Cr(n,2n)51Cr, 56Fe(n,p)56Mn, 56Fe(n,α)53Cr, and 56Fe(n,2n)55Fe, because these measurements are critical to estimate the level of the neutron activation for the fusion reactor structural materials. The theoretical computer codes TALYS-1.8 and EMPIRE-3.2.2 have been used for the calculation of the excitation functions. The theoretical calculations consider different nuclear reaction models, level density models and optical model potentials. The calculated excitation function results are compared with the existing experimental data obtained from the IAEA-EXFOR database, as well as with those available in the TENDL-2017 and ENDF/B-VIII.0-evaluated nuclear data libraries. The obtained results show the variation in excitation functions for different level density models. Moreover, we have studied the contribution from different reaction mechanisms in total reaction cross-section which varies with the incident neutron energy. These excitation function results can be useful to estimate the important parameters of nuclear reactors, such as nuclear heating, nuclear transmutation rates, and waste management etc. This kind of information can enhance the basic understanding of the mechanism of the fast neutron-induced nuclear reactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. [1]

    P Reimer PhD Thesis (University of Cologne) (2002)

  2. [2]

    E E Bloom et al. J. Nuclear Mater. 122 17–26 (1984)

    ADS  Article  Google Scholar 

  3. [3]

    R A Forrest and G J Butterworth Nuclear Data for Science and Technology, Springer (Berlin, Heidelberg) p 267–272 (1992)

    Google Scholar 

  4. [4]

    IAEA Experimental Nuclear Reaction Data (EXFOR) https://www-nds.iaea.org/exfor/exfor.htm

  5. [5]

    A Koning, S Hilaire, and S Goriely TALYS-1.8 manual http://www.talys.eu/download-talys/.talys1.8.pdf (2015)

  6. [6]

    TALYS-1.8 software for simulation of nuclear reactions http://www.talys.eu/download-talys/

  7. [7]

    M Herman et al. Nuclear Data Sheets 108 2655 (2007)

    ADS  Article  Google Scholar 

  8. [8]

    EMPIRE-3.2.2 system of codes for nuclear reaction https://www.nds.iaea.org/index-meeting-crp/EmpireWorkshop2013/downloadEmpire322win.htm

  9. [9]

    M Sadeghi and M Enferadi Ann. Nuclear Energy 38 825–834 (2011)

    Article  Google Scholar 

  10. [10]

    M Sadeghi, M Enferadi, and H Nadi J. Radioanal. Nuclear Chem. 286 259–263 (2010)

  11. [11]

    M Sadeghi, N Soheibi, T Kakavand, and M Yarmohammadi J. Radioanal. Nuclear Chem. 293 1–6 (2012)

  12. [12]

    M Sadeghi, M Enferadi, H Nadi, and C Tenreiro J. Radioanal. Nuclear Chem. 286 141–144 (2010)

  13. [13]

    B Lalremruata et al. Ann. Nuclear Energy 36 458–463 (2009)

    Article  Google Scholar 

  14. [14]

    A J Koning and J P Delaroche Nucl. Phys. A 713 231–310 (2013)

    ADS  Article  Google Scholar 

  15. [15]

    V Avrigeanu, M Avrigeanu, and C Manailescu Phys. Rev. C 90 044612 (2014)

    ADS  Article  Google Scholar 

  16. [16]

    J Raynal CEA Saclay Report No CEA-N-2772 (1994)

  17. [17]

    J Kopecky and M Uhl Phys. Rev. C 41 1941 (1990)

    ADS  Article  Google Scholar 

  18. [18]

    A Gilbert and A G W Cameron Can. J. Phys. 43 1446 (1965)

    ADS  Article  Google Scholar 

  19. [19]

    W Dilg, W Schantl, H Vonach, and M Uhl Nucl. Phys. A 217 269 (1973)

    ADS  Article  Google Scholar 

  20. [20]

    A V Ignatyuk, K K Istekov, and G N Smirenkin Sov. J. Nucl. Phys. 29 450 (1979)

    Google Scholar 

  21. [21]

    A V Ignatyuk, J L Weil, S Raman, and S Kahane Phys. Rev. C 47 1504 (1993)

    ADS  Article  Google Scholar 

  22. [22]

    A V Ignatyuk, G N Smirenkin, and A S Tishin Sov. J. Nucl. Phys. 21 255 (1975)

    Google Scholar 

  23. [23]

    J J Griffin Phys. Rev. Lett. 17 478 (1966)

  24. [24]

    C K Cline and M Blann Nucl. Phys. A 172 225 (1971)

    ADS  Article  Google Scholar 

  25. [25]

    C K Cline Nucl. Phys. A 193 417 (1972)

    ADS  Article  Google Scholar 

  26. [26]

    I Ribanský, P Obložinský, and E Bětak Nucl. Phys. A 205 545 (1973)

    ADS  Article  Google Scholar 

  27. [27]

    V A Plujko Acta Phys. Pol. B 31 435 (2000)

    ADS  Google Scholar 

  28. [28]

    R Capote et al. Nuclear Data Sheets 110 3107 (2009)

    ADS  Article  Google Scholar 

  29. [29]

    A D’Arrigo et al. J. Phys. G. 20 365 (1994)

    ADS  Article  Google Scholar 

  30. [30]

    J Raynal, Technical Report No. SMR-9/8 IAEA (unpublished)

  31. [31]

    J Raynal ICTP International Seminar Course (IAEA, ICTP, Trieste, Italy) p. 281 (1972)

  32. [32]

    Talys Evaluated nuclear data libraries https://tendl.web.psi.ch/tendl-2017/tendl2017.htm

  33. [33]

    Evaluated nuclear data files https://www.nds.iaea.org/exfor/endf.htm

  34. [34]

    NNDC https://www.nndc.bnl.gov/qcalc/

  35. [35]

    W Mannhart and D Schmidt No. PTB-N53, Physikalisch-Technische Bundesanstalt (2007)

  36. [36]

    A Fessler, E Wattecamps, D L Smith, and S M Qaim Phys. Rev. C 58 996 (1998)

    ADS  Google Scholar 

  37. [37]

    D L Smith and J W Meadows Nuclear Sci. Eng. 76 43–48 (1980)

    Article  Google Scholar 

  38. [38]

    B D Kern, W E Thompson, and J M Ferguson Nucl. Phys. 10 226–234 (1959)

    ADS  Article  Google Scholar 

  39. [39]

    V A Khryachkov et al. EPJ Web of Conferences 21 (2012)

  40. [40]

    H Liskien, M Uhl, M Wagner, and G Winkler Ann. Nuclear Energy 16 563–570 (1989)

  41. [41]

    Y Uno et al. Nuclear Sci. Eng. 122 247–257 (1996)

    Article  Google Scholar 

  42. [42]

    A A Filatenkov USSR report to the INDC 0460 (2016)

  43. [43]

    A Fessler et al. Nuclear Sci. Eng. 134 171–200 (2000)

    Article  Google Scholar 

  44. [44]

    D Paul et al. Nuclear Instrum. Methods Phys. Res. Sect. A 404 143–148 (1998)

    Article  Google Scholar 

  45. [45]

    L I Klochkova, B S Kovrigin, and V N Kuritsin No. INDC (CCP)-376, IAEA (1994)

  46. [46]

    J P Gupta, H D Bhardwaj, and R Prasad Pramana 24 637–642 (1985)

    ADS  Article  Google Scholar 

  47. [47]

    S L Sothras PhD Thesis (University Microfilms Order No. 78-09,993, United States) (1977)

  48. [48]

    R Spangler, E L Draper, and T A Parish (Univ. of Texas, Austin) (1975)

  49. [49]

    D L Smith and J W Meadows Nuclear Sci. Eng. 58 314–320 (1975)

    Article  Google Scholar 

  50. [50]

    D L Allan Proc. Phys. Soc. Sect. A 70 195 (1957)

    ADS  Article  Google Scholar 

  51. [51]

    J J Singh Trans. Am. Nucl. Soc 15:147–148 (1972)

    Google Scholar 

  52. [52]

    D M Chittenden II, D G Gardner, and R W Fink Phys. Rev. 122 860 (1961)

  53. [53]

    R Coszach et al. Phys. Rev. C 61 064615 (2000)

    ADS  Article  Google Scholar 

  54. [54]

    Z Wang et al. Phys. Rev. C 92 044601 (2015)

    ADS  Article  Google Scholar 

  55. [55]

    S K Saraf et al. Nuclear Sci. Eng. 107 356–373 (1991)

    Article  Google Scholar 

  56. [56]

    A Wallner et al. J. Kor. Phys. Soc. 59 1378 (2011)

    Article  Google Scholar 

  57. [57]

    L R Greenwood No. Conf-89092341, Argonne National Lab. (USA) (1989)

  58. [58]

    D L Bowers and L R Greenwood J. Radioanal. Nuclear Chem. 123 461–469 (1988)

    Article  Google Scholar 

  59. [59]

    Joel Frehaut et al. No.CEA-CONF5486, CEA Centre d’Etudes de Bruyeres-le-Chatel (1980)

  60. [60]

    N I Molla and S M Qaim Nucl. Phys. A 283 269–288 (1977)

    ADS  Article  Google Scholar 

  61. [61]

    R Wenusch and H Vonach J. Oesterr. Akad. Wiss. Math. Nat. 99 6201 (1962)

    Google Scholar 

  62. [62]

    V Corcalciuc et al. Nucl. Phys. A 307 445–471 (1978)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors (A. Kumar) thanks to the DAE-BRNS, Government of India (Sanction No. 36(6)/14/23/2016-BRNS), IUAC-UGC, Government of India (Sanction No. IUAC/XIII.7/UFR-58310) and DST, Government of India (Sanction No. INT/RUS/RFBR/P-250) for the financial support for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A Gandhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gandhi, A., Rai, N.K., Prajapati, P.K. et al. Evaluation of the nuclear excitation functions of fast neutron-induced reactions on 52Cr and 56Fe isotopes. Indian J Phys 93, 1345–1351 (2019). https://doi.org/10.1007/s12648-019-01397-8

Download citation

Keywords

  • Fusion reactors
  • Low-activation materials
  • Excitation functions
  • (n,p), (n,α), and (n,2n) reactions
  • TALYS-1.8
  • EMPIRE-3.2.2

PACS Nos.

  • 24.10.−i
  • 28.20.−v
  • 28.52.−s