Skip to main content
Log in

Dielectric study of Ti-doped Bi2VO5.5 solid electrolyte

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Synthesis and characterization of Bi2V1−xTixO5.5−(x/2)−δ (0 ≤ x ≤ 0.150) was done. For the present system, the lower limit of Ti required for near-complete tetragonal phase stabilization has been found to be x = 0.125. The optimum values of ionic conductivity were obtained for the compositions; Bi2V0.875Ti0.125O5.4375 and Bi2V0.9Ti0.1O5.45 at 300 °C and 600 °C, respectively. Interestingly, two peaks have been observed in frequency versus dielectric loss spectra for parent compound, which is in \(\alpha\)-orthorhombic phase, as well as for tetragonal phase stabilized specimens with compositions x ≥ 0.125 at temperatures below 300 °C. No such peaks have been found in \(\beta\)-orthorhombic (x = 0.085) as well as in mixed tetragonal and orthorhombic (x = 0.1 and 0.1125) phases. Thus, we propose that frequency-dependent dielectric loss spectra can be used to qualitatively distinguish \(\alpha\) and \(\gamma\)-phases from \(\beta\)-phase in BITIVOX system and it is the central result of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B Singh, S Ghosh, S Aich and B Roy J. Power Sources 339 103 (2017).

    Article  ADS  Google Scholar 

  2. D S Khaerudini, G Guan, P Zhang, X Hao and A Abudula Rev. Chem. Eng. 30 539 (2014).

    Article  Google Scholar 

  3. S Lazure, Ch Vernochet, R N Vannier, G Nowogrocki and G Mairesse Solid State Ionics 90 117 (1996).

    Article  Google Scholar 

  4. F Krok, I Abrahams, M Malys, W Bogusz, J R Dygas, J A G Nelstrop and A J Bush Solid State Ionics 136–137 119 (2000).

    Article  Google Scholar 

  5. J Chmielowiec, G Pa´Sciak and P Bujło J. Alloys Compd. 451 676 (2008).

    Article  Google Scholar 

  6. F Krok, I Abrahams, D J Bangobango, W Bogusz and J A G Nelstrop Solid State Ionics 86–88 261 (1996).

    Article  Google Scholar 

  7. L F Brum Malta and M E Medeiro J. Therm. Anal. Calorim. 87 883 (2007).

    Article  Google Scholar 

  8. S Beg, S Hafeez and N A S Al-Areqi Philos. Mag. 90 4579 (2010).

    Article  ADS  Google Scholar 

  9. S Beg and N A S Al-Areqi Mater. Chem. Phys. 118 15 (2009).

    Article  Google Scholar 

  10. E P Kharitonova and V I Voronkova Inorg. Mater. 43 55 (2007).

    Article  Google Scholar 

  11. S Beg, S Hafeez and N A S Al-Areqi Defect Diffus. Forum 316–317 7 (2011).

    Google Scholar 

  12. M H Paydar, A M Hadian and G Fafilek J. Mater. Sci. 39 1357 (2004).

    Article  ADS  Google Scholar 

  13. J Yan and M Greenblatt Solid State Ionics 81 225 (1995).

    Article  Google Scholar 

  14. V Sharma, A K Shukla and J Gopalakrishnan Solid State Ion. 58 359 (1992).

    Article  Google Scholar 

  15. S Beg and S Haneef Phase Transit. 87 821 (2014).

    Article  Google Scholar 

  16. H Putz, Gbr Brandenburg and Kreuzherrenstr. Match! – Phase Identification from Powder Diffraction—Version 3, Crystal Impact, 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match.

  17. K Sooryanarayana, T N Guru Row and K B R Varma Mater. Res. Bull. 34 425 (1999).

    Article  Google Scholar 

  18. C Muller, M Anne and M Bacmann Solid State Ionics 111 27 (1998).

    Article  Google Scholar 

  19. L Zhang, F Liu, K Brinkman, K L Reifsnider and Virkar J. Power Sources 247 947 (2014).

    Article  ADS  Google Scholar 

  20. D Tripathy and A Pandey J. Alloys Compd. 737 136 (2018).

    Article  Google Scholar 

  21. A S Bondarenko and G A Ragoish In Progress in Chemometrics Research, Pomerantsev A. L., Ed.; Nova Science Publishers: New York, 2005, pp. 89–102 http://www.abc.chemistry.bsu.by/vi/analyser/.

  22. R Kant, K Singh and O P Pandey Ionics 16 277 (2010).

    Article  Google Scholar 

  23. S Bag and B Behera J. Sci. Adv. Mate. Devices 1 512 (2016).

    Google Scholar 

  24. R Kant, K Singh and O P Pandey Ceram. Int. 35 221 (2009).

    Article  Google Scholar 

  25. E S Buyanova, M V Morozova, Ju V Emelyanova, S A Petrova, R G Zakharov, N V Tarakina and V M Zhukovskiy Solid State Ion. 243 8 (2013).

    Article  Google Scholar 

  26. W J Bowman, J Zhu, R Sharma and P A Crozier Solid State Ionics 272 9 (2015).

    Article  Google Scholar 

  27. S Beg, N A S Al-Areqi, S Hafeez and A Al–Alas Ionics 21 421 (2015).

    Article  Google Scholar 

  28. A KezˇIonis, W Bogusz, F Krok, J Dygas, A Orliukas, I Abrahams and W Gebicki Solid State Ionics 119 145 (1999).

    Article  Google Scholar 

  29. I Abrahams, F Krok, M Malys and W Wrobel Solid State Ionics 176 2053 (2005).

    Article  Google Scholar 

  30. F Abraham, M F Debreuille-Gresse, G Mairesse and G Nowogrocki Solid State Ionics 28–30 529 (1988).

    Article  Google Scholar 

  31. A Dutta and T P Sinha J. Phys. Chem. Solids 67 1484 (2006).

    Article  ADS  Google Scholar 

  32. S Bag and B Behera Int. J. Emerg. Technol. Adv. Eng. 5 (2015).

  33. M Roy, S Sahu, A M Awasthi and S Bharadwaj J. Therm. Anal. Calorim. 115 1265 (2014).

    Google Scholar 

  34. T V Kumar, A S Chary, S Bhardwaj, A M Awasthi and S N Reddy Int. J. Mater. Sci. Appl. 2 173 (2013).

    Google Scholar 

  35. K Shantha and K B R Varma Solid State Ionics 99 225 (1997).

    Article  Google Scholar 

  36. T Badapanda, R K Harichandan, S S Nayak, A Mishra and S Anwar Process. Appl. Ceram. 8 145 (2014).

    Google Scholar 

  37. N Pandey, A K Thakur and R N P Choudhary Indian J. Eng. Mater. Sci. 15 191 (2008).

    Google Scholar 

  38. N Shukla, A K Thakur, A Shukla and D T Marx Int. J. Electrochem. Sci. 7 7644 (2014).

    Google Scholar 

  39. G Mairesse, P Roussel, R N Vannier, M Anneb and G Nowogrocki Solid State Sci. 5 861 (2003).

    Article  Google Scholar 

  40. D L Sidebottom, P F Green and R K Brow J. Non-Cryst. Solids 183 151 (1995).

    Article  ADS  Google Scholar 

  41. L Borah, B Paik, S A Hashmi and A Pandey Ionics 18 747 (2012).

    Google Scholar 

  42. R B Belgacem, M Chaari, A F Brana, B J Garcia and A Matoussi J. Am. Ceram. Soc. 100 2045 (2017).

    Article  Google Scholar 

  43. Y B Taher, N Moutia, A Oueslati and M Gargouri RSC Adv. 6 39750 (2016).

    Article  Google Scholar 

  44. N K Mohanty, R N Pradhan, S K Satpathy, A K Behera, B Behera and P Nayak J. Mater. Sci. Mater. Electron. 25 117 (2014).

Download references

Acknowledgements

The authors are grateful to DST, New Delhi, for providing the FIST facility (Sanction Order Number SB/52/CMP-093/2013) in the Physics department for XRD and impedance studies. One of the authors (AJS) gratefully acknowledges DST, New Delhi, for INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, D., Saikia, A., Tado, G.T. et al. Dielectric study of Ti-doped Bi2VO5.5 solid electrolyte. Indian J Phys 93, 845–859 (2019). https://doi.org/10.1007/s12648-018-1356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1356-4

Keywords

PACS No.

Navigation