Advertisement

Indian Journal of Physics

, Volume 93, Issue 5, pp 627–638 | Cite as

Spin-polarized optical properties of half-metallic binary XBi (X = Ca, Sr and Ba) compounds in zinc blende and wurtzite phases

  • S. Benatmane
  • L. Beldi
  • H. Bendaoud
  • S. Méçabih
  • B. AbbarEmail author
  • B. Bouhafs
Original Paper
  • 52 Downloads

Abstract

In this work, we aim to study the spin-polarized optical properties of the non-transition metal-based binary compounds XBi (X = Ba, Sr and Ca) in the zinc blende and wurtzite phases. The calculations are performed by the developed full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the spin density functional theory. We used the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (PBE-GGA) and the recently modified Becke–Johnson potential (mBJ-GGA) to generate the exchange–correlation potential. The optical constants as the dielectric function, refractive index and extinction coefficient were calculated and discussed in detail. Our compounds are identified as potential candidates for spintronic applications and high-performance electronic devices, due to their possible half-metallic character. The interband transitions responsible for the structures in the spectra are specified. It is shown that the Bi-p states and (Ca, Sr, Ba)-d states play the major role in optical transitions as initial and final states.

Keywords

DFT Half-metal Ferromagnetism Optical properties 

PACS No.

42.79.-e 71.15.Mb 78.20.-e 78.20.Ci 

References

  1. [1]
    S Datta and B Das Appl. Phys. Lett. 56 665 (1990)ADSCrossRefGoogle Scholar
  2. [2]
    R De Groot, F Mueller, P Van Engen and K Buschow Phys. Rev. Lett. 50 2024 (1983)ADSCrossRefGoogle Scholar
  3. [3]
    K Kusakabe, M Geshi, H Tsukamoto and N Suzuki J. Phys: Condens. Matter 16 S5639 (2004)ADSGoogle Scholar
  4. [4]
    M Sieberer, J Redinger, S Khmelevskyi and P Mohn Phys. Rev. B 73 024404 (2006)ADSCrossRefGoogle Scholar
  5. [5]
    K L Yao, J L Jiang, Z L Liu and G Y Gao Phys. Lett. A 359 326 (2006)ADSCrossRefGoogle Scholar
  6. [6]
    G Y Gao, K L Yao, Z L Liu, J Zhang Y Min and S W Fan Phys. Lett. A 372 1512 (2008)ADSCrossRefGoogle Scholar
  7. [7]
    M Geshi, K Kusakabe, H Nagara, and N Suzuki Phys. Rev. B 76 054433 (2007)ADSCrossRefGoogle Scholar
  8. [8]
    O Volnianska and P Bogusławski Phys. Rev. B 75 224418 (2007)ADSCrossRefGoogle Scholar
  9. [9]
    O Volnianska and P Bogusławski Ph. D. thesis (Institute of Physics, Polish Academy of Sciences in Warsaw) (2009)Google Scholar
  10. [10]
    R R Palanichamy, G S Priyanga, A J Cinthia, A Murugan, A A Meenaatci and Kiyakutti J. Magn. Magn. Mater. 346 26 (2013)ADSCrossRefGoogle Scholar
  11. [11]
    T Hu, A Hashmi and J Hong Sci. Rep. 4 6059 (2014)ADSCrossRefGoogle Scholar
  12. [12]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  13. [13]
    F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)ADSCrossRefGoogle Scholar
  14. [14]
    P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)ADSCrossRefGoogle Scholar
  15. [15]
    W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)ADSCrossRefGoogle Scholar
  16. [16]
    O K Andersen Phys. Rev. B 12 3060 (1975)ADSCrossRefGoogle Scholar
  17. [17]
    D J Singh and L Nordstro (Planewaves, Pseudopotentials, and the LAPW Method: Springer, Berlin) (2005)Google Scholar
  18. [18]
    P Blaha, K Schwarz, G Madsen, D Kvasnicka, and J Luitz (An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties: Vienna University of Technology, Austria) (2012)Google Scholar
  19. [19]
    P E Blöchl, O Jepsen and O K Andersen Phys. Rev. B 49 16223 (1994)ADSCrossRefGoogle Scholar
  20. [20]
    R John and S Padmavathi Cryst. Struct. Theory Appl. 5 24 (2016)Google Scholar
  21. [21]
    A Reshak, H Huang, H Kamarudin and S Auluck J. Appl. Phys. 117 085703 (2015)ADSCrossRefGoogle Scholar
  22. [22]
    A H Reshak and S Auluck Phys. Rev. B 68 245113 (2003)ADSCrossRefGoogle Scholar
  23. [23]
    A Reshak and W Khan J. Alloys Compd. 592 92 (2014)CrossRefGoogle Scholar
  24. [24]
    C Okoye J Phys: Condens. Matt. 15 5945 (2003)ADSCrossRefGoogle Scholar
  25. [25]
    A M Fox and M Fox (Optical properties of solids: Oxford University Press, New York) (2010)zbMATHGoogle Scholar
  26. [26]
    J Sun, H T Wang, J He and Y Tian Phys. Rev. B 71 125132 (2005)ADSCrossRefGoogle Scholar
  27. [27]
    F Wooten (Optical Properties of Solids 1972, Academic: New York, NY, p. 49) (1972)Google Scholar
  28. [28]
    A P Sakhya, D Rai, A Dutta, R Thapa and T Sinha RSC Adv. 6 59988 (2016)CrossRefGoogle Scholar
  29. [29]
    D R Penn Phys. Rev. 128 2093 (1962)ADSCrossRefGoogle Scholar
  30. [30]
    M Fox (Optical properties of solids. Oxford master series in condensed matter physics, ed: Oxford University Press, Oxford) (2001)Google Scholar
  31. [31]
    F Kong and G Jiang Physica B: Condens. Matter. 404 2340 (2009)ADSCrossRefGoogle Scholar
  32. [32]
    R Ahuja, O Eriksson, B Johansson, S Auluck and J Wills Phys. Rev. B 54 10419 (1996)ADSCrossRefGoogle Scholar
  33. [33]
    G Shwetha and V Kanchana Phys. Rev. B 86 115209 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • S. Benatmane
    • 1
  • L. Beldi
    • 1
  • H. Bendaoud
    • 1
  • S. Méçabih
    • 1
  • B. Abbar
    • 1
    Email author
  • B. Bouhafs
    • 1
  1. 1.Laboratoire de Modélisation et Simulation en Sciences des MatériauxUniversité Djillali Liabès de Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria

Personalised recommendations