Skip to main content

Influence of annealing temperature on tuning the band gap of Mn-doped ZnS thin films deposited by spray pyrolysis technique

Abstract

Transition metal (Mn)-doped II–VI binary (ZnS) semiconductor (Zn1−xMnxS, where, x = 0.1, 0.3, 0.5 and 0.7 M) thin films were deposited onto glass substrates using a spray pyrolysis deposition technique at 350 °C. The as-deposited film was found to be homogeneous and smooth for x = 0.3 M. Annealing temperature greatly affects the film morphology. So the effect of annealing temperature on the structural, optical and electrical properties of the Zn0.70Mn0.30S thin films was studied to explore the suitable application of these films in optoelectronics devices. The lattice defects and the internal dislocation density are found to decrease with the annealing temperature, causing improved crystallinity of the film. The decrease in dislocation density suggests an increase in the crystallinity of the film. The optical transmittance of the thin films increases with increasing annealing temperature, and the optical band gap is found to be red-shifted from 3.45 to 3.05 eV. The redshift in the band gap is due to the decrease in the amorphous phase in the thin film owning to annealing. The electrical conductivity of the films was also found to be improved by thermal treatment which may be attributed to the increased crystallinity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    F Gode, C Gumus and M Zor J. Cryst. Growth 299 136 (2007)

    ADS  Article  Google Scholar 

  2. 2.

    H Haddad, A Chelouche, D Talantikite, H Merzouk, F Boudjouan and D Djouadi Thin Solid Films 589 451 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    M E Hagary, M E Ismail, E R Shaaban, A A Rashidi and S Althoyaib J. Mate Chem and Phys 132 581 (2012)

    Article  Google Scholar 

  4. 4.

    B Brodowska, W Dobrowolski, M Arciszewska, E I Slynko and V K Dugaev J. Alloys and Comp 423 205 (2006)

    Article  Google Scholar 

  5. 5.

    A Cynthia et al. Nano Letters 3 1441 (2003)

    Article  Google Scholar 

  6. 6.

    Y Wang, N Herron, K Moller and T Bein Solid State Commun. 77 33 (1991)

    ADS  Article  Google Scholar 

  7. 7.

    A K M S Chowdhury, D C Cameron and M S J Hashmi Surface and Coating Technology 116 46 (1999)

    Article  Google Scholar 

  8. 8.

    S Coe, W K Woo, M Bawendi and V Bulovic Nature 420 800 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    P Samarasekara, Chinese J. Phys 41 70 (2003)

    ADS  Google Scholar 

  10. 10.

    T Tan et al. Mater. Chem. Phys 111 305 (2008)

    Article  Google Scholar 

  11. 11.

    M R Islam and J Podder Cryst. Res. Technol 44 286 (2009)

    Article  Google Scholar 

  12. 12.

    W Luo et al. Microelectronics Journal 39 1108 (2008)

    Article  Google Scholar 

  13. 13.

    S Liu, H Zhang and M T Swihart Nanotechnology 20 235603 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    D Nithyaprakash, M Ramamurthy, P Thirunavukarasu, T Balasubramaniam, J. Chandrasekaran and P Maadeswaran J. Optoelect. Bio. Mater 1 42 (2009)

  15. 15.

    B Bodo, D Prakash and P K Kalita Int. J. App. Phys and Maths 2 181 (2012)

    Google Scholar 

  16. 16.

    F Rahman, M Zahan and J Podder Sensors & Transducers 149 54 (2013)

    Google Scholar 

  17. 17.

    B D Cullity et al. Elements of X-ray diffraction, 3rd edn. (New Jersey: Prentice Hall), p 664 (2001)

  18. 18.

    R Ghosh, D Basak, and S Fujihara J. App. Phys 96 2689 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    A Arunachalam, S Dhanapandian and C Manoharan Physica E 76 35 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    A Wei, J Liu, M Zhuang and Y Zhao Materials Sci. Semicon. Proc 16 478 (2013)

    Google Scholar 

  21. 21.

    T P Rao, M C S Kumar, S A Angayarkanni and M Ashok J. Alloys and Comp 485 413 (2009)

    Article  Google Scholar 

  22. 22.

    P A Luque, M A Q Lopez and A Olivas Materials Letters 106 49 (2013)

    Article  Google Scholar 

  23. 23.

    H Haddad, A Chelouche, D Talantikite, H Merzouk, F Boudjouan and D Djouadi Thin Solid Films 589 451 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    J Masek and F Maca Phys. Rev B 69 165212 (2004)

    ADS  Article  Google Scholar 

  25. 25.

    S Mahanty, D Basak, F Rueda and M Leoni J. Electron. Mater. 28 559 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    B Xia, I W Lenggoro and K Okuyama Chem. Mater 14 4969 (2002)

    Article  Google Scholar 

  27. 27.

    L J Van-der Pauw A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape Philips Technical Review 20 220 (1958)

  28. 28.

    S A Gad, M Boshta, A M A E Soud and Y A E Gendy Int. J. Phy. Sci 5 1004 (2010)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Podder.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahan, M., Islam, M.R. & Podder, J. Influence of annealing temperature on tuning the band gap of Mn-doped ZnS thin films deposited by spray pyrolysis technique. Indian J Phys 93, 611–616 (2019). https://doi.org/10.1007/s12648-018-1325-y

Download citation

Keywords

  • II–VI semiconductor
  • SEM
  • X-rays
  • Optical properties
  • Band gap energy

PACS Nos.

  • 72.80.Ey
  • 68.37.−d
  • 61.10.Nz
  • 78.40.−q