Advertisement

Indian Journal of Physics

, Volume 93, Issue 4, pp 459–465 | Cite as

Role of chromium in tungsten oxide (WO3) by microwave irradiation technique for sensor applications

  • V. HariharanEmail author
  • B. Gnanavel
  • V. Aroulmoji
  • K. Prabakaran
Original Paper
  • 38 Downloads

Abstract

Hydrated tungsten oxide (WO3·H2O)-based nanoparticles were synthesized using a simple and inexpensive facile microwave irradiation process, by doping chromium (2 wt%, 3 wt%, 5 wt% and 7 wt%) at 2.45 GHz with the power of 180 W for 10 min for gas sensor application. The resultant products were annealed at 600 °C at the ambient atmosphere in order to improve the crystallinity and to remove the impurities. The products were characterized by using powder XRD which confirmed the formation of orthorhombic and monoclinic structure of both as-prepared and annealed samples, respectively. Atomic force microscope shows the role of chromium in determining the surface morphology of the resultant products at microscopic level, Fourier transform infrared spectroscopic analysis confirmed the presence of essential functional groups formed through chemical bonds of the end products, room temperature UV–VIS DRS studies showed the optical behavior of the samples through emissions and band gap energy of the respective materials. Cyclic voltammetry study confirmed the suitability of the prepared chromium-doped tungsten oxide (WO3) materials through electrochemical property for photocatalytic and sensor applications.

Keywords

Hydrated tungsten Tungsten oxide Nanoparticles XRD Electron microscopy Spectroscopy 

PACS Nos.

61.46 61.48 65.80 

References

  1. [1]
    N Soultanidis, W Zhou, C J Kiely and M S Wong Langmuir 28 17771 (2012)CrossRefGoogle Scholar
  2. [2]
    C Santato, M Odziemkowski, M Ulmann and J Augustynski J. Am. Chem. Soc. 123 10639 (2001)CrossRefGoogle Scholar
  3. [3]
    H Zheng, Y Tachibana and K Kalantar-Zadeh Langmuir 26(24) 19148 (2010CrossRefGoogle Scholar
  4. [4]
    V Wood, M J Panzer, J E Halpert, J M Caruge, M G Bawendi and V Bulovic ACS Nano 3 3581 (2009)CrossRefGoogle Scholar
  5. [5]
    A Srinivasan, M Miyauchi J. Phys. Chem. C 116 15421 (2012)CrossRefGoogle Scholar
  6. [6]
    X Chen, J Ye, Shouyang, T Kako, Z Li and Z Zou ACS Nano 5 4310 (2011)Google Scholar
  7. [7]
    X Cui, J Shi, H Chen, L Zhang, L Guo, J Gao and J Li J. Phys. Chem. B 112 12024 (2008)CrossRefGoogle Scholar
  8. [8]
    G Wang, J Y Huang, X Yang, P I Gouma and M Dudley J. Phys. Chem. B 110 23777 (2006)CrossRefGoogle Scholar
  9. [9]
    L Xiong and T He Chem. Mater. 18 2211 (2006)CrossRefGoogle Scholar
  10. [10]
    H Xia, Y Wang, F Kong, S Wang, B Zhu, X Guo, J Zhang, Y Wang and S Wu Sens. Actuators B Chem 134(1) 133 (2008)CrossRefGoogle Scholar
  11. [11]
    N R Kalidindi, F S Manciu and C V Ramana Appl. Mater. Interfaces 3 863 (2011)CrossRefGoogle Scholar
  12. [12]
    S Zhu, X Liu, Z Chen, C Liu, C Feng, J Gu, Q Liu and D Zhang J. Mater. Chem. 20 9126 (2010)CrossRefGoogle Scholar
  13. [13]
    A Wolcott, T R Kuykendall, W Chen, S Chen and J Z Zhang J. Phys. Chem. B 110(50) 25288 (2006)CrossRefGoogle Scholar
  14. [14]
    H J Han, Y N Chen and Z J Wang RSC Adv. 5 92940 (2015)CrossRefGoogle Scholar
  15. [15]
    M Vasilopoulou, I Kostis, N Vourdas, G Papadimitropoulos, A Douvas, N Boukos, S Kennou and D Davazoglou J. Phys. Chem. C, 118(24) 12632 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • V. Hariharan
    • 1
    • 2
    Email author
  • B. Gnanavel
    • 4
  • V. Aroulmoji
    • 3
  • K. Prabakaran
    • 2
  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.PG & Research Department of PhysicsMahendra Arts and Science CollegeKalipatti, Namakkal DistrictIndia
  3. 3.Center for Research and DevelopmentMahendra Educational InstitutionsMallasamudiram, Namakkal DistrictIndia
  4. 4.PG & Research Department of PhysicsChikkaiah Naicker CollegeErodeIndia

Personalised recommendations