Indian Journal of Physics

, Volume 93, Issue 4, pp 439–447 | Cite as

Ni-doped ZnO films deposited by RF magnetron sputtering using raw powder target

  • B. KhalfallahEmail author
  • F. Chaabouni
  • M. Abaab
Original Paper


Pure and nickel-doped zinc oxide thin films were deposited by radio-frequency magnetron sputtering on glass substrates at room temperature using raw powder targets. The dopant concentration was varied from 0 to 4 wt%. Structural characterization of the samples performed with X-ray diffraction confirmed that all films exhibit the hexagonal wurtzite crystal structure with (002) preferred orientation. The average transmittance of all the films is higher than 80% in the visible wavelength region. PL analysis revealed that the ultraviolet emission intensity decreased and exhibited a redshift with increasing Ni concentration. This was consistent with the energy band values (3.35–3.28). A lowest electrical resistivity of 8.42 × 10−4 Ω cm was observed for the pure ZnO films, and by increasing Ni content, the electrical resistivity increases, which was subsequently affected by a decrease in charge carrier concentration. AC and DC conductivities were studied to explore the conduction mechanism. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping model. Activation energy values deduced from both dc conductivity and relaxation frequency are in the range of 0.49–0.61 eV. The analysis of the parameter s leads to the barrier height Wm values which are in agreement with that proposed by the theory of hopping of charge carriers over the potential barrier between the defect states in the band tail as suggested by Elliott.


ZnO thin films RF sputtering DC and AC conductivity Impedance spectroscopy 


77.55.hF 36.20.Ng 84.37.+q 07.60.Rd 



Authors express sincere gratitude to Nanomaterials and Photonics Laboratory team, Department of Physics, Faculty of Sciences of Tunis, for help in some experimental work.


  1. 1.
    A Hammouda A Canizarès P Simon A Boughalout and M Kechouane Vib. Spectrosc 62 217 (2012)CrossRefGoogle Scholar
  2. 2.
    H Q Bian S Y Ma Z M Zhang J M Gao and H B Zhu J. Cryst. Growth 394 132 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Xiaoxue Liu Fangting Lin Linlin Sun Wenjuan Cheng Xueming Ma and Wangzhou Shi Appl. Phys. Lett. 88 62508 (2006).CrossRefGoogle Scholar
  4. 4.
    S Abed M S Aida K Bouchouit A Arbaoui K Iliopoulos and B. Sahraoui Opt. Mater. 33 968 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    K Sato and H Katayama Yoshida J. Appl. Phys. 40 334 (2001)CrossRefGoogle Scholar
  6. 6.
    Y Wang X Liao Z Huang G Yin J Gu and Y. Yao Colloids Surf. A 372 165 (2010)CrossRefGoogle Scholar
  7. 7.
    A Korbecka and J A Majewski Low Temp. Phys. 35 53 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J H Li et al J. Lumin. 352 122 (2007)Google Scholar
  9. 9.
    J T Prater S Ramachandran A Tiwari and J. Narayan J. Electron. Mater. 35 852 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    D Karmakar et al Phys. Rev. B 75 144404 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    C W Cheng G Y Xu H Q Zhang and Y Luo Mater. Lett. 62 1617 (2008)CrossRefGoogle Scholar
  12. 12.
    S Ghosh et al Appl. Phys. A 90 765 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A A M Farag M Cavas F Yakuphanoglu and F M Amanullah J. Alloys Compd. 509 7900 (2011)CrossRefGoogle Scholar
  14. 14.
    S Abed M S Aida K Bouchouit A Arbaoui K Iliopoulos and B Sahraoui Optical Materials 33 968 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    E Liu P Xiao J S Chen B C Lim and L Li Current Applied Physics 8 408 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    B Pandey S Ghosh P Srivastava D K Avasthi D Kabiraj and J C Pivin Journal of Magnetism and Magnetic Materials 320 3347 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    B D Cullity and S R Stock Elements of X-ray diffractions, Prentice-Hall, Engle-wood Cliffs, 2001Google Scholar
  18. 18.
    R Siddheswaran et al Appl. Surf. Sci. 316 524 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    I. Novotny et al Appl. Surf. Sci. 312 167 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J B Wang H M Zhong Z F Li and Wei Lu J. Appl. Phys. 97 86105 (2005)CrossRefGoogle Scholar
  21. 21.
    J B Wang H M Zhong Z F Li and Wei Lu Appl. Phys. Lett. 88 101913 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Zhonghua Deng et al J Mater Sci: Mater Electron 21 1030 (2010)Google Scholar
  23. 23.
    G Kaur K Singh B S Lark and H S Sahota Radiat. Phys. Chem. 58 315 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    E Burstein Phys. Rev. B 93 632 (1954)ADSCrossRefGoogle Scholar
  25. 25.
    M Ivill et al New J. Phys. 10 65002 (2008)CrossRefGoogle Scholar
  26. 26.
    S RAJEH A BARHOUM A MHAMDI G LEROY B DUPONCHEL M AMLOUK and S GUERMAZI Bull. Mater. Sci. 39 177 (2016)CrossRefGoogle Scholar
  27. 27.
    Adem Sreedhar Jin Hyuk Kwon Jonghoon Yi Jong Su Kim and Jin Seog Gwag Mater. Sci. Semicond. Process. 49 8 (2016)CrossRefGoogle Scholar
  28. 28.
    Kuo Sheng Kao Wei Che Shih Wei Tsuen Ye and Da Long Cheng Thin Solid Films 605 77 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    F Boudjouan A Chelouche T Touam D Djouadi and Y Ouerdane Mater. Sci. Semicond. Process. 41 382 (2016)CrossRefGoogle Scholar
  30. 30.
    N Kumar and A Srivastava J. Alloys Compd. 706 438 (2017)CrossRefGoogle Scholar
  31. 31.
    Y Chen and S Y Ma Mater. Lett. 162 75 (2016)CrossRefGoogle Scholar
  32. 32.
    Qiong Xu et al Vacuum 84 1315 (2010)Google Scholar
  33. 33.
    J C C Fan and J B Goodenough J. Appl. Phys. 48 3524 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    T Wakano et al Physica E 10 260 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    P Bonneau et al Sol. Stat. Chem. 91 350 (1991)Google Scholar
  36. 36.
    J Liu et al J. Chem. Phys. 119 2812 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    R M Hill and A K. Jonscher J. Non-Cryst. Solids 3253 (1979)Google Scholar
  38. 38.
    A Mhamdi B Ouni A Amlouk K Boubaker and M Amlouk J. Alloys Compd. 582 810 (2014)CrossRefGoogle Scholar
  39. 39.
    A Mhamdi B Ouni A Amlouk K Boubaker M Amlouk and S. Belgacem J. Alloys Compd. 610250 (2014)Google Scholar
  40. 40.
    T Larbi B Ouni A Boukachem K Boubaker and M Amlouk Mater. Sci. Semicond. Process. 22 50 (2014)CrossRefGoogle Scholar
  41. 41.
    G W Tomlins J L Routbort and T O Mason J. Appl. Phys. 87 117 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    N F Mott and E A Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 1979Google Scholar
  43. 43.
    S R Elliott Adv. Phys. 36135 (1987)Google Scholar
  44. 44.
    A K Jonscher Nature 267673 (1977)Google Scholar
  45. 45.
    Y Ben Taher A Oueslati K Khirouni and M Gargouri Mater. Res. Bull. 78 148 (2016)CrossRefGoogle Scholar
  46. 46.
    J C Giuntini B Deroide P Belougne and J V Zanchetta Solid State Commun.62 739 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Laboratoire de Photovoltaïque et Matériaux SemiconducteursUniversité Tunis El Manar, ENITTunisTunisie

Personalised recommendations