Skip to main content
Log in

Mean excitation energy calculations for the atoms Z ≤ 54

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the mean excitation energies of atoms from Z = 1 to 54 were calculated. The calculations were carried out by using three different atomic electron densities. Thomas–Fermi electron densities with two different screening functions and Roothan–Hartree–Fock (RHF) electron densities were used. Obtained results show the RHF electron densities give more accurate results than others. In mean excitation calculations, γ is set to \( \sqrt 2 \) as suggested. However, when mean excitation energies are normalized to the reference values, it is found that γ values are ranging from 0.8 to 1.8. By using these γ values, one can be calculated the effective mean excitation energy more accurately than previous calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N Bohr Philos. Mag. 25 10 (1913)

    Article  Google Scholar 

  2. H A Bethe Ann. Phys. (Leipz.) 5 325 (1930)

    Article  ADS  Google Scholar 

  3. J Lindhard and M Scharff Dan. Mat. Fys. Medd. 27 1 (1953)

    Google Scholar 

  4. H Sugiyama J. Phys. Soc. Jpn. 41 1339 (1976)

    Article  ADS  Google Scholar 

  5. B S Yarlagadda, J E Robinson and W Brandt Phys. Rev. B 17 3473 (1978)

    Article  ADS  Google Scholar 

  6. O B Firsov J. Exp. Theor. Phys. (U.S.S.R.) 36 1517

    Google Scholar 

  7. S A Cruz, C Diaz-Garcia, A P Pathak and J Soullard Nucl. Instr. Meth. B 230 46 (2005)

    Article  ADS  Google Scholar 

  8. F Bloch Mater. Ann. Phys. (Leipz.) 16 285 (1933)

  9. L H Thomas Camb. Philos. Soc. 23 542 (1927)

    Google Scholar 

  10. E Fermi Rend. Accad. Naz. Lince. 6 602 (1927)

  11. W K Chu and D Powers Phys. Lett. 40A 23 (1972)

    Article  ADS  Google Scholar 

  12. S B Ghalbia, S P A Sauer, J Oddershede and J R Sabin J. Phys. Chem. B 114 633 (2010)

    Article  Google Scholar 

  13. J R Sabin Br. J. Res. 4 3 (2017)

  14. S P A Sauer, J Oddershede and J R Sabin J. Phys. Chem. C 114 20335 (2010)

  15. S P A Sauer, J Oddershede and J R Sabin Adv. Quantum Chem. Ch. 3, 71 29 (2015)

  16. S P A Sauer, J Oddershede and J R Sabin, Adv. Quantum Chem. 62 215 (2011)

  17. M C Walske Phys. Rev. 88 1283 (1952)

    Article  ADS  Google Scholar 

  18. M C Walske Phys. Rev. 101 940 (1956)

    Article  ADS  Google Scholar 

  19. E Bonderup and K Dan Vidensk Selsk Mat. Fys. Medd. 35 (1967)

  20. M S Livingston and H A Bethe Rev. Mod. Phys. 9 263 (1937).

    ADS  Google Scholar 

  21. J R Sabin and J Oddershede Phys. Rev. A 26 3209 (1982).

    Article  ADS  Google Scholar 

  22. J Oddershede and J R Sabin Atomic Data Nucl. Data Tables 31 275 (1984)

    Article  ADS  Google Scholar 

  23. W Brandt and M Kitagawa Phys. Rev. B 25 5631 (1982). (Erratum) Phys. Rev. B 26: 3968 (1982)

    Article  ADS  Google Scholar 

  24. M Ç Tufan, T Namdar and H Gümüş Radiat. Environ. Biophys. 52 245 (2013)

    Article  ADS  Google Scholar 

  25. M Ç Tufan, Ö Kabadayı and H Gümüş Radiat. Phys. Chem. 76 631 (2007)

    Article  ADS  Google Scholar 

  26. NIST Database, NIST X-Ray Mass Attenuation Coefficient. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab1.html. Accessed 10 June 2017

  27. H Sugiyama Phys. Med. Biol. 30 4331 (1985)

    Article  Google Scholar 

  28. M Ç Tufan, A Köroğlu and H Gümüş Acta Phys. Pol. A 107 459 (2005)

    Article  Google Scholar 

  29. T Tietz J. Chem. Phys. 25 789 (1956)

    Article  ADS  Google Scholar 

  30. J F Ziegler, J P Biersack and U Littmark (New York: Pergamon) p 321 (1985)

  31. C F Bunge, J A Barrientos and A V Bunge Nucl. Data Tables 53 113 (1993)

    Article  ADS  Google Scholar 

  32. E Clementi and C Roetti Nucl. Data Tables 14 177 (1974)

    Article  ADS  Google Scholar 

  33. M Usta and M Ç Tufan Radiat. Phys. Chem. 140 43 (2017)

    Article  ADS  Google Scholar 

  34. Z Yüksel and M Ç Tufan Can. J. Phys. cjp-2018-0093 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Yüksel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufan, M.Ç., Yüksel, Z. Mean excitation energy calculations for the atoms Z ≤ 54. Indian J Phys 93, 301–305 (2019). https://doi.org/10.1007/s12648-018-1303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1303-4

Keywords

PACS Nos.

Navigation