Skip to main content
Log in

Light absorption optimizing in (La0.25Bi0.75)2FeCrO6 active layers: GGA + U study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An ab initio generalized gradient approximation study, plus Hubbard (U = 4.1 eV) correlation, of (La0.25Bi0.75)2FeCrO6 alloy, in the pnma structure/ferrimagnetic order of transition rare earth d-La electrons, shows an optimum optical absorption of about 103 cm−1 near an ideal bandgap around 1.52 eV, with local magnetic moments of (Cr3+, Fe3+) found to be (− 2.56, 4.14) μB, making it a promising candidate for photovoltaics and photoferroics. Tuned-gap La-Bi2FeCrO6 active layer should own enhanced light absorption and carrier mobility, could be suitable light absorbers, and should be an efficient alternative to many absorbers like wide-bandgap chalcopyrite for solar cells, failing to reach highest efficiency, or even compete with their metal–organic halide perovskite counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R Eskandari, X Zhang and L M Malkinski Appl. Phys. Lett. 110 121105 (2017)

    Article  ADS  Google Scholar 

  2. Y Yuan, Z Xiao, B Yang and J Huang J. Mater. Chem. A 2 6027 (2014)

    Article  Google Scholar 

  3. Günter and J Huignard Topics in Applied Physics (Berlin: Springer) (1988)

  4. K T Butler, J M Frost and A Walsh Energy Environ. Sci. 8 838 (2015)

    Article  Google Scholar 

  5. S K Wallace, K L Svane, W P Huhn, T Zhu, D B Mitzi, V Blum and A Walsh Sustain. Energy 1 1339 (2017)

    Google Scholar 

  6. Z Hu, M Tian, B Nysten and A M Jonas Nat. Mater. 8 62 (2009)

    Article  ADS  Google Scholar 

  7. J F Scott Science 315 954 (2007)

    Article  ADS  Google Scholar 

  8. V Garcia and M Bibes Nature 483 279 (2012)

    Article  ADS  Google Scholar 

  9. D Lee, S M Yang, T H Kim, B C Jeon, Y S Kim and J G Yoon Adv. Mater. 24 402 (2012)

    Article  Google Scholar 

  10. Z Fan, K Sun and J Wang J. Mater. Chem. A 3 18809 (2015)

    Article  Google Scholar 

  11. W Shockley J. Appl. Phys. 32 510 (1961)

    Article  ADS  Google Scholar 

  12. J W Bennett, I Grinberg and A M Rappe J. Am. Chem. Soc. 130 17409 (2008)

    Article  Google Scholar 

  13. R F Berger and J B Neaton Phys. Rev. B 86 165211(2012)

    Article  ADS  Google Scholar 

  14. R Nechache, C Harnagea, S Li, L Cardenas, W Huang and J Chakrabartty Nat. Photon. 9 61 (2014)

    Article  ADS  Google Scholar 

  15. H Wang, G Y Gou and J Li Nano Energy 22 507 (2016)

    Article  Google Scholar 

  16. A Khare, A Singh, S S Prabhu and D S Rana Appl. Phys. Lett. 102 192911 (2013)

    Article  ADS  Google Scholar 

  17. R Seshadri and N A Hill Chem. Mater. 13 2892 (2001)

    Article  Google Scholar 

  18. M Alexe and D Hesse Nat. Commun. 2 256 (2011)

    Article  ADS  Google Scholar 

  19. T Ahmed, A Chen, D A Yarotski, S A Trugman, Q Jia and J-X Zhu APL Mater. 5 035601 (2017)

    Article  ADS  Google Scholar 

  20. H-J Feng, W Deng, K Yang, J Huang and X C Zeng J. Phys. Chem. C 121 4471 (2017)

    Article  Google Scholar 

  21. S Chen, X G Gong, A Walsh and S-H Wei Phys. Rev. B 79 165211 (2009)

    Article  ADS  Google Scholar 

  22. S Chen, X G Gong, A Walsh and S-H Wei Appl. Phys. Lett. 94 041903 (2009)

    Google Scholar 

  23. S Schorr, G Wagner, M Tovar and D Sheptyakov MRS Symp. Proc. Y03 1012 (2007)

    Google Scholar 

  24. O E Gonzalez-Vazquez, J C Wojdeł, O Diéguez and J Íñiguez Phys. Rev. B 85 064119 (2012)

    Article  ADS  Google Scholar 

  25. A V Zalesskii, A A Frolov, T A Khimich and A A Bush Phys. Solid State 45 141 (2003)

    Article  ADS  Google Scholar 

  26. K Vijayanandhini, Ch Simon, V Pralong, Y Bréard, V Caignaert and B Raveau J. Phys. Condens. Matter 21 486002 (2009)

    Article  Google Scholar 

  27. K Vijayanandhini, Ch Simon, V Pralong, V Caignaert and B Raveau Phys. Rev. B 79 224407 (2009)

    Article  ADS  Google Scholar 

  28. A H Slavney, T Hu, A M Lindenberg and H I Karunadasa J. Am. Chem. Soc. 138 2138 (2016)

    Article  Google Scholar 

  29. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  30. E Şaşıoğlu, I Galanakis, C Friedrich and S Blügel Phys. Rev. B 88 134402 (2013)

    Article  ADS  Google Scholar 

  31. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  32. W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)

    Article  ADS  Google Scholar 

  33. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz Wien2k: An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystalline Properties Vienna (University Technology Austria) (2001)

  34. D Singh Plane Waves Pseudopotentials and the LAPW Method (Boston: Kluwer Academic) (1994)

    Book  Google Scholar 

  35. A I Liechtenstein, V I Anisimov and J Zaane Phys. Rev. B 52 R5467 (1995)

    Article  ADS  Google Scholar 

  36. V I Anisimov, J Zaanen and O K Andersen Phys. Rev. B 44 943 (1991)

    Article  ADS  Google Scholar 

  37. P Baettig, C Ederer and N A Spaldin Phys. Rev. B 72 214105 (2005)

    Article  ADS  Google Scholar 

  38. S L Dudarev Phys. Rev. B 57 1505 (1998)

    Article  ADS  Google Scholar 

  39. E Blochl, O Jepsen and O K Andersen Phys. Rev. B 49 16223 (1994)

    Article  ADS  Google Scholar 

  40. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. P E Blochl Phys. Rev. B 50 17953 (1994)

    Article  ADS  Google Scholar 

  42. F Tran and P Blaha Phys. Rev. Lett. 22102 226401 (2009)

    Article  ADS  Google Scholar 

  43. D Koller, F Tran and P Blaha Phys. Rev. B 85 (15) 155109 (2012)

    Article  ADS  Google Scholar 

  44. K Ueda, H Tabata and T Kawai Science 280 1064 (1998)

    Article  ADS  Google Scholar 

  45. K Miura and K Terakura Phys. Rev. B 63 104402 (2001)

    Article  ADS  Google Scholar 

  46. R Nechache, C Harnagea, L P Carignan, O Gautreau, L Pintilie and M P Singh J. Appl. Phys. 105 061621 (2009)

    Article  ADS  Google Scholar 

  47. M R Suchomel, C I Thomas, M Allix, M J Rosseinsky, A M Fogg and M F Thomas Appl. Phys. Lett. 90 112909 (2007)

    Article  ADS  Google Scholar 

  48. V M Goldschmidt Naturwissenschaften 14 477 (1926)

    Article  ADS  Google Scholar 

  49. S M Selbach, M A Einarsrud and Grande T Chem. Mater. 21 1969 (2009)

    Google Scholar 

  50. S Ju and G Y Guo Appl. Phys. Lett. 92 202504 (2008)

    Article  ADS  Google Scholar 

  51. W C Tan, K Koughia, J Singh and S O Kasap, Optical Properties of Condensed Matter and Applications (Fundamental Optical Properties of Materials I: Book-chapter), J. Singh Edition (Wiley) (2006)

    Google Scholar 

  52. V Banerjee, K J Rakesh, and H K Sehgal Phys. Rev. E 70, 036122 (2004)

    Article  ADS  Google Scholar 

  53. A Walsh, S-H Wei, S Chen and X G Gong 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009)

  54. M A Green, K Emery, Y Hisikawa and W Warta Prog. Photovolt. Res. Appl. 15, 425 (2007)

    Article  Google Scholar 

  55. S Chen, X G Gong, A Walsh and S-H Wei Appl. Phys. Lett. 94, 041903 (2009)

    Article  ADS  Google Scholar 

  56. S Schorr, G Wagner, M Tovar and D Sheptyakov MRS Symp. Proc. 1012, Y03 (2007)

    Article  Google Scholar 

  57. G Rupprecht and R O Bell Phys. Rev. 135 A748 (1964)

    Article  ADS  Google Scholar 

  58. PM Woodward Acta Crystallogr. B Struct. Sci. 53 32 (1997)

    Article  Google Scholar 

  59. T Nakamura and J H J Choy Solid State Chem. 20 233 (1977)

    Article  ADS  Google Scholar 

  60. J M Rondinelli, S J May and J W Freeland MRS Bull. 37 261 (2012)

    Article  Google Scholar 

  61. J B Goodenough Jahn–Teller Phenom. Solids Annu. Rev. Mater. Sci. 28 27 (1998)

    Google Scholar 

  62. G Catalan and J F Scott Adv. Mater. 21 2463 (2009)

    Article  Google Scholar 

  63. C-L Hu, X Xu, C-F Sun and J-G Mao J. Phys. Condens. Matter 23 395501 (2011)

    Article  Google Scholar 

  64. E Sjostedt, L Nordstrom and D J Singh Solid State Commun. 114 15 (2000)

    Article  ADS  Google Scholar 

  65. D Fisher, M Fraenkel, Z Henis, E Moshe and S Eliezer Phys. Rev. E 65 016409 (2001)

    Article  ADS  Google Scholar 

  66. E Batke, D Heitmann and C W Tu Phys. Rev. B 34 6951 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Merabet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennaoum, M., Abid, H., Merabet, B. et al. Light absorption optimizing in (La0.25Bi0.75)2FeCrO6 active layers: GGA + U study. Indian J Phys 93, 327–333 (2019). https://doi.org/10.1007/s12648-018-1297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1297-y

Keywords

PACS Nos.

Navigation