Skip to main content
Log in

Temperature and frequency of complex conductivity, penetration depth and superfluid density of Ba(Fe1−xCox)2As2-superconductor in one- and two-gap models

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The temperature and frequency dependence of complex dynamical conductivity \(\sigma = \sigma_{1} + i\sigma_{2}\), penetration depth, and superfluid density of Ba(Fe1−xCox)2As2 are calculated in the framework of one- and two-gap models at terahertz frequencies for a temperature range of 2 K < T < TC (TC = 22 K). In the single-gap model, an isotropic s-wave gap without any node and a d-wave gap with possible nodes are considered. In the two-gap model, one of the gaps was considered isotropic s-wave gap with amplitude \(\varDelta_{A} = 3\;{\text{meV}}\), while the other gap was supposed to be an anisotropic d-wave gap with possible nodes, and its rms amplitude was \(\varDelta_{0} = 8\;{\text{meV}}\). The interaction between the gaps is waived, since it is small, and its description is problematic. Comparing the result with the experimental data proves that the two-gap model consistently describes the optical characteristics of Ba(Fe1−xCox)2As2. In the two-gap model, the temperature dependence of \(\sigma_{1}\) demonstrated a coherence peak at frequencies below 15 cm−1. The temperature dependence of the penetration depth calculated from \(\sigma_{2}\) shows power-law behavior at low temperatures, and the superfluid density varies steeply near TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Kamihara, T Watanabe, M Hirano and H Hosono J. Am. Chem. Soc. 130 3296 (2008)

    Article  Google Scholar 

  2. F Kretzschmar, T Böhm, U Karahasanović, B Muschler, A Baum, D Jost, J Schmalian, S Caprara, M Grilli, C Di Castro, J G Analytis, J H Chu, I R Fisher and R Hackl Nat. Phys. 12 560 (2016)

    ADS  Google Scholar 

  3. P Gao, Y Zhang, S Y Zhang, S Lee, J Weiss, J R Jokisaari, E Hellstrom, D C Larbalestier, C B Eom and X Q Pan Phys. Rev. B 91 104525 (2015)

    Article  ADS  Google Scholar 

  4. M Georgiev and L Mihallov Mol. Eng. 7 263 (1997)

    Article  Google Scholar 

  5. A Chubukov Ann. Rev. Condens. Matter Phys. 3 57 (2012)

    Article  Google Scholar 

  6. A L Dobryakov, V M Farztdinov, Y E Lozovik and V S Letokhov Opt. Commun. 105 309 (1994)

    ADS  Google Scholar 

  7. I Kazumasa, G Vadim, K Fritz, I Ataru, T Ichiro, A Eike, P Aurimas, CH Paul, W Werner, T Angelika, H Ruben, A Saicharan, W Sabine, M Ingolf, E Manuela, H Jens, H Bernhardl, D Stefan-Ludwig and V E Dmitri Sci. Rep. 6 28390 (2016)

    Google Scholar 

  8. Y Nakai, K Ishida, Y Kamihara, M Hirano and H Hosono J. Phys. Soc. Jpn 77 073701 (2008)

    Article  ADS  Google Scholar 

  9. Y Bang and G R Stewart J. Phys. Condens. Matter. 29 123003 (46 pp) (2017)

  10. H J Grafe, D Paar, G Lang, N J Curro, G Behr, J Werner, J Hamann-Borrero, CHess, N Leps, R Klingeler and B Buchne Phys. Rev. Lett. 101 047003 (2008)

    Article  ADS  Google Scholar 

  11. R T Gordon, N Ni, C Martin, M A Tanatar, M D Vannette, H Kim, G D Samolyuk, J Schmalian, S Nandi, A Kreyssig, A I Goldman, J Q Yan, S L Bud’ko, P C Canfield and R Prozorov Phys. Rev. Lett. 12 127004 (2009)

    Article  ADS  Google Scholar 

  12. R T Gordon, C Martin, H Kim, N Ni, M A Tanatar, J Schmalian, I I Mazin, S L Bud’ko, P C Canfield and R Prozorov Phys. Rev. B 79 100506 (2009)

    Article  ADS  Google Scholar 

  13. C Martin, M E Tillman, H Kim, M A Tanatar, S K Kim, A Kreyssig, R T Gordon, M D Vannette, S Nandi, V G Kogan, S L Bud’ko, P C Canfield, A I Goldman and R Prozorov Phys. Rev. Lett. 102 247002 (2009)

    Article  ADS  Google Scholar 

  14. K Hashimoto, T Shibauchi, T Kato, K Ikada, R Okazaki, H Shishido, M Ishikado, H Kito, A Iyo, H Eisaki, S Shamoto and Y Matsuda Phys. Rev. Lett. 102 017002 (2009)

    Article  ADS  Google Scholar 

  15. J D Fletcher, A Serafin, L Malone, J G Analytis, J H Chu, A S Erickson, I R Fisher and A Carrington Phys. Rev. Lett. 102 147001 (2009)

    Article  ADS  Google Scholar 

  16. A B Vorontsov, M G Vavilov and A V Chubukov Phys. Rev. B 79 140507(R) (2009)

  17. H Luetkens, H H Klauss, M Kraken, F J Litterst, T Dellmann, R Klingeler, C Hess, R Khasanov, A Amato, C Baines, M Kosmala, O J Schumann, M Braden, J Hamann-Borrero, N Leps, A Kondrat, G Behr, J Wernner and B Buechner Nat. Mater. 8 350 (2008)

    Google Scholar 

  18. T J Williams, A A Aczel, E Baggio-Saitovitch, S L Bud’ko, P C Canfield, J P Carlo, T Goko, J Munevar, N Ni, Y J Uemura, W Yu, and G M Luke Phys. Rev. B 80 094501 (2009)

    Article  ADS  Google Scholar 

  19. T Fischer, A V Pronin, J Wosnitza, K Iida, F Kurth, S Haindl, L Schultz, B Holzapfel and E Schachinger Phys. Rev. B 82 224507 (2010)

    Article  ADS  Google Scholar 

  20. G D Mahan, Many-Particle Physics, 2nd edn (New York: Plenum Press) (1990)

    Book  Google Scholar 

Download references

Acknowledgements

Our research is supported by Islamic Azad University-shoushtar Branch as a research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nasimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasimi, A.A., Moarrefi-Romeileh, M. Temperature and frequency of complex conductivity, penetration depth and superfluid density of Ba(Fe1−xCox)2As2-superconductor in one- and two-gap models. Indian J Phys 93, 315–319 (2019). https://doi.org/10.1007/s12648-018-1293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1293-2

Keywords

PACS Nos.

Navigation