Skip to main content
Log in

The angular dependence of ferromagnetic resonance in exchange coupling bilayer films with stress anisotropy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the ferromagnetic resonance modes are worked out considering in-plane anisotropy and out-of-plane anisotropy, respectively, in ferromagnetic/antiferromagnetic bilayer films. The ferromagnetic resonance frequency, magnetic susceptibility, and field linewidth with stress anisotropy have been investigated by using ferromagnetic resonance method. The results show that while applied magnetic field is applied along some directions, the ferromagnetic resonance frequency can be enhanced and field linewidth can be broaden by increasing the intensity of stress anisotropy field. Furthermore, the effect of stress anisotropy field proves substantially stronger for out-of-plane anisotropy than in-plane anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W H Meiklejohn and C P Bean Phys. Rev. 102 1413 (1956)

    Article  ADS  Google Scholar 

  2. J Smit and H G Beljers Philips Res. Rep. 10 113 (1955)

    Google Scholar 

  3. Z Celinski, K B Urquhart and B Heinrich J. Magn. Magn. Mater. 166 6 (1997)

    Article  ADS  Google Scholar 

  4. D Spenato, S P Pogossian J. Magn. Magn. Mater. 285 79 (2005)

    Article  ADS  Google Scholar 

  5. B Heinrich Can. J. Phys. 78 161 (2000)

    Article  ADS  Google Scholar 

  6. R D McMichael, M D Stiles, P J Chen and W F EgeIhoff Jr Phys. Rev. B 58 8605 (1998)

    Article  ADS  Google Scholar 

  7. K Takano, R H Kodama, A E Berkowitz and W Cao and G Thomas Phys. Rev. Lett. 79 1130 (1997)

    Article  ADS  Google Scholar 

  8. H Xi, K R Mountfifield and R M White J. Appl. Phys. 87 4367 (2000)

    Article  ADS  Google Scholar 

  9. A Layadi J. Appl. Phys. 112 073901 (2012)

    Article  ADS  Google Scholar 

  10. M Tafur, M A Sousa and F Pelegrini Appl. Phys. Lett. 102 062402 (2013)

    Article  ADS  Google Scholar 

  11. P G Barreto, M A Sousa, F Pelegrini, W Alayo, F J Litterst and E Baggio-Saitovitch Appl. Phys. Lett. 104 202403 (2014)

    Article  ADS  Google Scholar 

  12. C E Patton J. Appl. Phys. 39 3060 (1968)

    Article  ADS  Google Scholar 

  13. P Padhan, W Prellier and B Mercey Phys. Rev. B 70 184419 (2004)

    Article  ADS  Google Scholar 

  14. M Han, D C Jiles, J E Snyder, T A Lograsso and D L Schlagel J. Appl. Phys. 95 6947 (2004)

    ADS  Google Scholar 

  15. P B He, Z D Li, A L Pan, Q Wan, Q L Zhang, R X Wang, Y G Wang, W M Liu and B S Zou Phys. Rev. B 78 054420 (2008)

    Article  ADS  Google Scholar 

  16. D E Gonzalez-Chavez, R Dutra and W O Rosa Phys. Rev. B 88 104431 (2013)

    Article  ADS  Google Scholar 

  17. J Griffiiths Nature 158 670 (1946)

    Article  ADS  Google Scholar 

  18. C Kittel Phys. Rev. 73 155 (1948)

    Article  ADS  Google Scholar 

  19. H Suhl Phys. Rev. 97 555 (1955)

    Article  ADS  Google Scholar 

  20. V G Harris IEEE Trans. Magn. 48 1075 (2012)

    Article  ADS  Google Scholar 

  21. S N Hsiao, F T Yuan, H W Chang, H W Huang, S K Chen and H Y Lee Appl. Phys. Lett. 94 232505 (2009)

    Article  ADS  Google Scholar 

  22. K Sun, Q Li and H L Guo J. Alloys Compd. 663 645 (2016)

    Article  Google Scholar 

  23. J H Rong, H Wang and G H Yun Chin. J. Comput. Phys. 29 6 (2012)

    Google Scholar 

  24. V Erel and A D Freed Compos. Part B Eng. 120 152 (2017)

    Article  Google Scholar 

  25. M Buchmeier, D E Bürger, P A Grünberg, C M Schneider, R Meijers, R Calarco, C Raeder and M Farle Phys. Sta. Sol.(a) 203 1567 (2006)

    Article  ADS  Google Scholar 

  26. B Heinrich, G Woltersdorf, R Urban and E Simanek J. Appl. Phys. 93 7545 (2003)

    Article  ADS  Google Scholar 

  27. E Simanek Phys. Rev. B 67 144418 (2003)

    Article  ADS  Google Scholar 

  28. A Layadi J. Appl. Phys. 87 1429 (2000)

    Article  ADS  Google Scholar 

  29. L Zhang, J H Rong, G H Yun, D Wang and L B Bao Phys. B 502 5 (2016)

    Article  ADS  Google Scholar 

  30. L Zhang, J H Rong, G H Yun, D Wang and L B Bao Mater. Res. Express 3 076101 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11072104, and by the Science and Technology Research Projects in Colleges and Universities of Inner Mongolia of China under Grant No. NJZY16014, and by the Nature Science Foundation of Inner Mongolia of China under Grant No. 2012MS110.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Rong or G. H. Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, J.H., Zhang, L., Yun, G.H. et al. The angular dependence of ferromagnetic resonance in exchange coupling bilayer films with stress anisotropy. Indian J Phys 93, 207–211 (2019). https://doi.org/10.1007/s12648-018-1290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1290-5

Keywords

PACS Nos.

Navigation