Skip to main content
Log in

Dual-material gate dual-stacked gate dielectrics gate-source overlap tri-gate germanium FinFET: analysis and application

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This study proposes a novel dual-material-gate dual-stacked-gate dielectrics gate–source overlap Ge FinFET and compares its characteristics with conventional FinFET. The proposed device shows very less leakage current (IOFF) (~ 10−17 A), significant on drain current (~ ION) (~ 10−4 A), very high ratio of ION to IOFF (ION/IOFF) (~ 1013) and less subthreshold swing of (SS) (71 mV/dec). This study presents the effect of different dielectrics, oxide thicknesses (tox) and back-gate voltages (VGB) on transfer characteristics of the proposed device. The effect of channel concentration on ION/IOFF, threshold voltage (Vth), transconductance (gm) and SS is also investigated. The effect of overlap length (Lov) on analog parameter, gate–source capacitance (Cgs), is also analyzed. Moreover, the effect of fin thickness (Tfin) on Vth and SS is also studied. The height of the BOX plays an important role in reducing IOFF. Moreover, with emphasis on digital application, by using the proposed device a digital inverter circuit is implemented, and this study investigates the characteristics using mixed-mode simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G E Moore Electronics 38 33 (1965)

    Google Scholar 

  2. P M Zeitzoff and J E Chung IEEE Circuits Devices Mag. 21 4 (2005)

    Article  Google Scholar 

  3. T Poiroux, M. Vinet, O. Faynot, J. Widiez, J. Lolivier, B. Previtali, T. Ernst and S. Deleonibus, Solid-State Electron. 50 18 (2006)

    Article  ADS  Google Scholar 

  4. T Ernst, C Tinella, C Raynaud and S Cristoloveanu Solid-State Electron. 46 373 (2002)

    Article  ADS  Google Scholar 

  5. H S P Wong IBM J. Res. Dev. 46 133 (2002)

    Article  Google Scholar 

  6. T Y Chan, J Chen, P K Ko and C Hu Int. Electron Devices Meet. (Washington, DC, USA) p 718 (1987)

  7. Y C Yeo, T-J King and C Hu IEEE Trans. Electron Devices 50 1027 (2003)

    Article  ADS  Google Scholar 

  8. D Hisamoto, W-C Lee, J Kedzierski, H Takeuchi, K Asano, E Anderson, C Kuo, T-J King, J Bokor and C Hu IEEE Trans. Electron Devices 47 2320 (2000)

    Article  ADS  Google Scholar 

  9. B Yu, L Chang, S Ahmed, H Wang, S Bell, C-Y Yang, C Tabery, C Ho, Q Xiang, T-J King, J Bokor, C Hu, M-R Lin and D Kyser Digest. Int. Electron Devices Meet. (San Francisco CA, USA) p 251 (2002)

  10. J W Yang, P M Zeitzoff and H H Tseng IEEE Trans. Electron Devices 54 1464 (2007)

    Article  ADS  Google Scholar 

  11. W K Yeh, W Zhang, Y-L Yang, A-N Dai, K Wu, T-H Chou, C-L Lin, K-J Gan, C-H Shih and P-Y Chen IEEE Trans. Device Mater. Reliab. 16 610 (2016)

    Article  Google Scholar 

  12. R Das, R Goswami and S Baishya Superlattices Microstruct. 91 51 (2016)

    Article  ADS  Google Scholar 

  13. Y. Li, H.-M. Chou and J.-W. Lee IEEE Trans. Nanotechnol. 4 510 (2005)

    Article  ADS  Google Scholar 

  14. M D Ko, C W Sohn, C K Baek and Y. H. Jeong IEEE Trans. Electron Devices 60 2721 (2013)

    Article  ADS  Google Scholar 

  15. H Nam and C Shin IEEE Trans. Electron Devices 61 2007 (2014)

    Article  ADS  Google Scholar 

  16. K M Tan, K-M Tan, T-Y Liow, R T P Lee, K M Hoe, C-H Tung, N Balasubramanian, G S Samudra and Y-C Yeo IEEE Electron. Device Lett. 28 905 (2007)

    Article  ADS  Google Scholar 

  17. W Xu, H Yin, X Ma, P Hong, M Xu and L Meng Nanoscale Res. Lett. 10 249 (2015)

    Article  ADS  Google Scholar 

  18. A R Degheidy, A M Elabsy, H G Abdelwahed and E B Elkenany Indian J. Phys. 86 363 (2012)

    Article  ADS  Google Scholar 

  19. Sentaurus Device User, Synopsys p. 2009 (2009)

  20. Y Tsividis and C M Andrew The four-terminal MOS transistor (New York: McGraw-Hill) p 208 (2011)

    Google Scholar 

  21. http://nptel.ac.in/courses/113106062/Lec14.pdf. Accesed 18 Nov 2017

  22. R Saha, B Bhowmick and S Baishya IEEE Trans. Electron Devices 64 969 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashree Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Baishya, S. Dual-material gate dual-stacked gate dielectrics gate-source overlap tri-gate germanium FinFET: analysis and application. Indian J Phys 93, 197–205 (2019). https://doi.org/10.1007/s12648-018-1289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1289-y

Keywords

PACS Nos.

Navigation