Skip to main content

Advertisement

Log in

Laser heated diamond anvil cell facility for high temperature high pressure research: application to material synthesis and melting studies

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Laser-heated diamond anvil cell (LHDAC) technique is a unique and powerful experimental tool for studying the phase behaviour of materials at thermodynamic conditions comparable to the Earth’s deep interior. Fine tuning of the two thermodynamic variables viz., pressure and temperature enables one to manipulate matter on an atomic scale leading to the synthesis of novel compounds or transformation of the properties of existing materials. In this article the details of an ytterbium doped fibre laser based LHDAC facility are presented. The advantages and excellent performance of the off-axis angular heating geometry is demonstrated through results of high pressure melting experiments on KBr up to 24 GPa and high temperature high pressure synthesis of γ-Mo2N carried out by laser heating molybdenum metal and molecular nitrogen at 7 GPa and 2000 K in a Mao–Bell type diamond anvil cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R Boehler Rev. Geophys. 38, 221 (2000)

    Article  ADS  Google Scholar 

  2. S Tateno, K Hirose, Y Ohishi and Y Tatsumi Science 330, 359 (2010)

    Article  ADS  Google Scholar 

  3. R Torchio, O Mathon, S Pascarelli Coord. Chem. Rev. 277–278, 80 (2014)

    Article  Google Scholar 

  4. S H Shim, S H Duffy and G Shen Nature 411, 571 (2001)

    Article  ADS  Google Scholar 

  5. N N Patel, A K Verma, A K Mishra, M Sunder and S M Sharma Phys. Chem. Chem. Phys. 19, 7996 (2017)

    Article  Google Scholar 

  6. S Zhai, E Ito Geosci. Front. 2, 101 (2011)

    Article  Google Scholar 

  7. L G Khvostantsev, V N Slesarev and V V Brazhkin High Press. Res. 24, 371 (2004)

    Article  ADS  Google Scholar 

  8. S Pasternak, G Aquilanti, S Pascarelli, R Poloni, B Canny, B V Coulet, L Zhang Rev. Sci. Instrum. 79, 085103 (2008)

    Article  ADS  Google Scholar 

  9. Y Meng, R Hrubiak, E Rod, R Boehler and G Shen Rev. Sci. Instrum. 86, 072201 (2015)

    Article  ADS  Google Scholar 

  10. W J Nellis in G.L. Chiarotti, M. Bernasconi M & L. Ulivi (eds.) High pressure phenomena (Societa Italiana di Fisica), p 109 (2002)

  11. R C Liebermann High Press. Res. 31, 493 (2011)

    Article  ADS  Google Scholar 

  12. A P Jephcoat and S P Besedin Philos. Trans. R. Soc. Lond. A. 354, 1333 (1996)

    Article  ADS  Google Scholar 

  13. C S Zha and W A Bassett Rev. Sci. Instrum. 74, 1255 (2003)

    Article  ADS  Google Scholar 

  14. N Dubrovinskaia and L Dubrovinsky Rev. Sci. Instrum. 74, 3433 (2003)

    Article  ADS  Google Scholar 

  15. L Miyagi, W Kanitpanyacharoen, S V Raju, P Kaercher, J Knight, A MacDowell, H R Wenk, Q Williams and E Z Alarcon Rev. Sci. Instrum. 84, 025118 (2013)

    Article  ADS  Google Scholar 

  16. B Shukla, N R Sanjay Kumar, M Sekar and N V Chandra Shekar J. Instrum. Soc. India 46, 75 (2016)

    Google Scholar 

  17. V R Howes Proc. Phys. Soc. 80, 648 (1962)

    Article  ADS  Google Scholar 

  18. R Boehler Hyperfine Interact. 128, 307 (2000)

    Article  ADS  Google Scholar 

  19. D Errandonea J. Phys. Chem. Solids 67, 2017 (2006)

    Article  ADS  Google Scholar 

  20. A Salamat, R A Fischer, R Briggs, M I McMahon, S Petitgirard Coord. Chem. Rev. 277–278, 15 (2014)

    Article  Google Scholar 

  21. A F Young, C Sanloup, E Gregoryanz, S Scandolo, R J Hemley and H K Mao Phys. Rev. Lett. 96, 155501 (2006)

    Article  ADS  Google Scholar 

  22. Y Meng, G Shen and H K Mao J. Phys. Condens. Matter 18, S1097 (2006)

    ADS  Google Scholar 

  23. D Andrault and G Fiquet Rev. Sci. Instrum. 72 1283 (2001)

    Article  ADS  Google Scholar 

  24. A Jayaraman Rev. Mod. Phys. 55, 65 (1983)

    Article  ADS  Google Scholar 

  25. D J Dunstan and I L Spain J. Phys. E Sci. Instrum. 22, 913 (1989)

    Article  ADS  Google Scholar 

  26. S Meenakshi, V Vijayakumar and B K Godwal Indian J. Pure Appl. Phys. 44, 440 (2006)

    Google Scholar 

  27. S Petitgirard, A Salamat, P Beck, G Weck and P Bouvie J. Synchrotron Rad. 21, 89 (2014)

    Article  Google Scholar 

  28. N Subramanian, N V Chandra Shekar, N R Sanjay Kumar and P Ch Sahu Curr. Sci. 91, 175 (2006)

  29. J F Lin, M Santoro, V V Struzhkin, H K Mao, and R J Hemley Rev. Sci. Instrum. 75, 3302 (2004)

    Article  ADS  Google Scholar 

  30. A F Goncharov and J C Crowhurst Rev. Sci. Instrum. 76, 063905 (2005)

    Article  ADS  Google Scholar 

  31. H K Mao, B Chen, J Chen, K Li, J F Lin, W Yang and H Zheng Matter Rad. Extremes 1, 59 (2016)

    Google Scholar 

  32. A Friedrich, B Winkler, E A J Arellano and L Bayarjargal Materials 4, 1648 (2011)

    Article  ADS  Google Scholar 

  33. E H Bordon, R Riedel, A Zerr, P F McMillan, G Auffermann, Y Ports, W Bronger, R Kniep and P Kroll Chem. Soc. Rev. 35, 987 (2006)

    Article  Google Scholar 

  34. N R SanjayKumar, NV Chandra Shekar, S Chandra, J Basu, R Divakar and P Ch Sahu J. Phys. Condens. Matter 24, 362202 (2012)

    Google Scholar 

  35. N R Sanjay Kumar, Sharat Chandra, S Amirthapandian, N V Chandra Shekar and P Ch Sahu Mat. Res. Exp. 2, 016503 (2015)

  36. N N Patel, S Meenakshi, S M Sharma AIP Conf. Proc. 1591, 664 (2014)

    Google Scholar 

  37. R Boehler, H G Musshoff, R Ditz, G Aquilanti and A Trapananti Rev. Sci. Instrum. 80, 045103 (2009)

    Article  ADS  Google Scholar 

  38. J D Barnett, S Block and G J Piermarini Rev. Sci. Instrum. 44, 1 (1973)

    Article  ADS  Google Scholar 

  39. G Shen, M L Rivers, Y Wang, S R Sutton Rev. Sci. Instrum. 72, 1273 (2001)

    Article  ADS  Google Scholar 

  40. S Anzellini, A Dewaele, M Mezouar, P Loubeyre and G Morard Science 340, 464 (2013)

    Article  ADS  Google Scholar 

  41. V B Prakapenka, A Kubo, A Kuznetsov, A Laskin, O Skurikhin, P Dera, M L Rivers and S R Sutton High Press. Res. 28, 225 (2008)

    Article  ADS  Google Scholar 

  42. R Jeanloz and D L Heinz J. Phys. C8 83 (1984)

    Google Scholar 

  43. R Boehler Geophys. Rev. Lett. 13, 1153 (1986)

    Article  ADS  Google Scholar 

  44. J Deng, Z Du, L R Benedetti and K K M Lee J. Appl. Phys. 121, 025901 (2017)

    Article  ADS  Google Scholar 

  45. P Lazor, G Shen and S K Saxena Phys. Chem. Miner. 20, 86 (1993)

    Article  ADS  Google Scholar 

  46. R Boehler, N V Bargen and A Chopelas J. Geophys. Res. 95, 21731 (1990)

    Article  ADS  Google Scholar 

  47. L Yang, A Karandikar and R Boehler Rev. Sci. Instrum. 83, 063905 (2012)

    Article  ADS  Google Scholar 

  48. K Ohta, Y Kuwayama, K Hirose, K Shimizu and Y Ohishi Nature 534, 95 (2016)

    Article  ADS  Google Scholar 

  49. R Boehler Nature 363, 534 (1993)

    Article  ADS  Google Scholar 

  50. D Errandonea, B Schwager, R Ditz, C Gessmann, R Boehler and M Ross Phys. Rev. B 63 132104 (2001)

    Article  ADS  Google Scholar 

  51. M Ross LLNL-TR-406604, https://e-reports-ext.llnl.gov/pdf/364495.pdf (2008)

  52. L J Swartzendruber Bull. Alloy Phase Diagr. 3, 161 (1982)

    Article  Google Scholar 

  53. X Zhao and K J Range J. Alloys Compd. 296, 72 (2000)

    Article  Google Scholar 

  54. E Soignard, P F McMillan, T D Chaplin, S M Farag, C L Bull, M S Somayazulu and K Leinenweber Phys. Rev. B 68, 132101 (2006)

    Article  ADS  Google Scholar 

  55. C L Bull et al J. Solid. Stat. Chem. 179, 1762 (2006)

    Article  ADS  Google Scholar 

  56. J R Fuertes, A Karandikar, R Boehler and D Errandonea Phys. Earth Planet. Inter. 181, 69 (2010)

    Article  ADS  Google Scholar 

  57. A Dewaele, A B Belonoshko, G Garbarino, F Occelli, P Bouvier, M Hanfland and M Mezouar Phys. Rev. B 85, 214105 (2012)

    Article  ADS  Google Scholar 

  58. C W F T Pistorius J. Phys. Chem. Solids 26, 1543 (1965)

    Article  ADS  Google Scholar 

  59. R Boehler, M Ross and D B Boercker Phys. Rev. B 53, 556 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NNP and SM acknowledge the technical help of H. K. Poswal, Rajib Kar and A. Dwivedi in Raman measurements, SEM measurements and installation of the motorized XYZ stage respectively. A.K. Mishra is also gratefully acknowledged by NNP and SM for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Sunder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N.N., Sunder, M. & Sharma, S.M. Laser heated diamond anvil cell facility for high temperature high pressure research: application to material synthesis and melting studies. Indian J Phys 92, 1259–1269 (2018). https://doi.org/10.1007/s12648-018-1237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1237-x

Keywords

PACS Nos.

Navigation