Indian Journal of Physics

, Volume 92, Issue 10, pp 1299–1306 | Cite as

Study of lamellar multilayer grating near B K-edge and Si L-edge

  • P C PradhanEmail author
  • M Nayak
Original Paper


We present an efficient design of lamellar multilayer grating (LMG) for the extreme ultraviolet/soft X-ray region near both the Si L-edge and B K-edge. The designs of LMGs have been performed by exploring different materials combinations, which are capable of providing high resolution and peak reflectivity. The performance analysis of the designed LMGs is made analytically using the coupled wave theory for single-order regime. That provides an estimation of diffraction efficiency and resolution. The effect of structural imperfections such as tapering of the lamellar profile and interfacial width on the optical properties are also analysed to describe non-ideal LMG structures.


Diffraction gratings Coupled wave theory Multilayers X-ray optics Interface roughness 


42.79.Dj 68.65.Ac 41.50. + h 68.35.Ct 



The research group of the interfaces, multilayers, X-ray sources, and optics, from Laboratorie de Chimie Physique-Matière et Rayonnement, Paris, France is sincerely acknowledged for providing us the calculated efficiency profiles for NbC/Si-based ML and LMG structures using modal theory. Authors (MN and PCP) sincerely thank P. A. Naik and G. S. Lodha for constant support and encouragement throughout the work. PCP also thanks, Arijit Chakraborty for his help for “MATLAB” programming. PCP thanks, Homi Bhabha National Institute, India, for financial support.


  1. [1]
    A E Yakshin et al. SPIE Proc. 6517 651701 (2007)CrossRefGoogle Scholar
  2. [2]
    R van der Meer et al. AIP Adv. 3 012103 (2013)ADSCrossRefGoogle Scholar
  3. [3]
    R Benbalagh et al. Nucl. Instrum. Methods Phys. Res. A 458 650 (2001)ADSCrossRefGoogle Scholar
  4. [4]
    R Benbalagh et al. Nucl. Instrum. Methods Phys. Res. A 541 590 (2005)ADSCrossRefGoogle Scholar
  5. [5]
    P Jonnard, K Le Guen and J-M André X-Ray Spectrom. 38 117 (2009)ADSCrossRefGoogle Scholar
  6. [6]
    P Jonnard, K Le Guen, J-M André, J-R Coudevylle and N Isac X-Ray Spectrom. 41 308 (2012)ADSCrossRefGoogle Scholar
  7. [7]
    J-M André, K Le Guen and P Jonnard X-Ray Spectrom. 43 122 (2013)ADSCrossRefGoogle Scholar
  8. [8]
    R van der Meer Ph. D Thesis (2013)Google Scholar
  9. [9]
    M Nayak, G S Lodha, A K Sinha, R V Nandedkar and S A Shivashankar Appl. Phys. Lett. 89 181920 (2006)ADSCrossRefGoogle Scholar
  10. [10]
    E Zoethout, E Louis and F Bijkerk J. Appl. Phys. 120 115303 (2016)ADSCrossRefGoogle Scholar
  11. [11]
    E Spiller Soft X-ray Optics (Washington: SPIE Optical Engineering) (1994)CrossRefGoogle Scholar
  12. [12]
    A Niranjan, M H Modi, A Singh, M. Idir and G S Lodha AIP Conf. Proc. 1591 687 (2014)ADSCrossRefGoogle Scholar
  13. [13]
    A. F. Jankowski and D. M. Makowiecki Opt. Eng. 30 2003 (1991)ADSCrossRefGoogle Scholar
  14. [14]
    P C Pradhan et al. J. Phys. D: Appl. Phys. 49 135305 (2016)CrossRefGoogle Scholar
  15. [15]
    H Wang et al. Optik 125 3415 (2014)ADSCrossRefGoogle Scholar
  16. [16]
    D Ksenzov, T Panzner, C Schlemper, C Morawe and U Pietsch Appl. Opt. 48 6684 (2009)ADSCrossRefGoogle Scholar
  17. [17]
    J-M André et al. X-ray Spectrom. 34 203 (2005)ADSCrossRefGoogle Scholar
  18. [18]
    I V Kozhevnikov, R van der Meer, H M J Bastians, K-J Boller and F Bijkerk Opt. Express 18 16234 (2010)ADSCrossRefGoogle Scholar
  19. [19]
    I V Kozhevnikov, R van der Meer, H M J Bastians, K-J Boller and F Bijkerk Opt. Express 19 9172 (2011)ADSCrossRefGoogle Scholar
  20. [20]
    X Yang, I V Kozhevnikov, Q Huang and Z Wang J. Opt. Soc. Am. B 32 506 (2015)ADSCrossRefGoogle Scholar
  21. [21]
    S T Peng J. Opt. Soc. Am. A 6 1869 (1989)ADSCrossRefGoogle Scholar
  22. [22]
    L I Goray Nucl. Instrum. Methods Phys. Res. A 536 211 (2005)ADSCrossRefGoogle Scholar
  23. [23]
    A Sammar, J-M André and B Pardo Opt. Commun. 86 245 (1991)ADSCrossRefGoogle Scholar
  24. [24]
    K Krastev, J-M André and R Barchewitz J. Opt. Soc. Am. A 13 2027 (1996)ADSCrossRefGoogle Scholar
  25. [25]
    V V Martynov et al. Nucl. Instrum. Methods Phys. Res. A 339 617 (1994)ADSCrossRefGoogle Scholar
  26. [26]
    M H Modi, S K Rai, M Idir, F Schäefers and G S Lodha Opt. Express 20 15114 (2012)ADSCrossRefGoogle Scholar
  27. [27]
    Y Q Liu, G Shao and K P Homewood J. Alloys Compd. 320 72 (2001)CrossRefGoogle Scholar
  28. [28]
    W F Gale and T. C. Totemeir Smithells Metals Reference Book, 8th edn. (Oxford: Elsevier Butterworth-Heinemann) (2004)Google Scholar
  29. [29]
    O Wood et al. SPIE Proc. 9422 942201 (2015)Google Scholar
  30. [30]
    N I Chkhalo, S Künstner, V N Polkovnikov, N N Salashchenko, F Schäfers and S D Starikov Appl. Phys. Lett. 102 011602 (2013)ADSCrossRefGoogle Scholar
  31. [31]
    C Michaelsen et al. Opt. Lett. 26 792 (2001)ADSCrossRefGoogle Scholar
  32. [32]
    Y Liu, Q Hung, H. Jiang, Y. Yang, Z Zhang and Z Wang SPIE Proc. 9963 99630H (2016)ADSCrossRefGoogle Scholar
  33. [33]
    R van der Meer, I V Kozhevnikov, H M J Bastiaens, K-J Boller and F Bijkerk Opt. Express 21 13105 (2013)ADSCrossRefGoogle Scholar
  34. [34]
    R van der Meer et al. SPIE Proc. 8139 81390Q (2011)CrossRefGoogle Scholar
  35. [35]
    P C Pradhan et al. J. Appl. Phys. 120 045308 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Synchrotrons Utilization SectionRaja Ramanna Centre for Advanced TechnologyIndoreIndia
  2. 2.Homi Bhabha National InstituteAnushaktinagar, MumbaiIndia

Personalised recommendations