Skip to main content
Log in

Local field correction effects on quasi-particle inelastic scattering rate in a coupled-quantum-layers system at finite temperature

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper reports a theoretical study on local field correction effects on the temperature-dependent intra-layer inelastic scattering rate of interacting electrons in a coupled-quantum-wells structure. The temperature dependent dynamic dielectric function is calculated using random phase approximation. In order to consider the short-range effects of exchange–correlation holes around electrons, we employ the Hubbard, finite-temperature Hubbard and STLS approximations. Finally, the quasi-particle inelastic scattering rate is calculated using the imaginary part of the electron self-energy within the GW method. The results suggest that employing a local field correction causes reductions in the quasi-particle inelastic scattering rate of electrons in a coupled-quantum-wells, at any temperature, wave vector and electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A Fetter, J Walecka, Quantum Theory of Many-Particle Systems (New York, USA: McGraw-Hill Publ, Comp) (1971)

  2. G D Mahan, Many-Particle Physics (New York, USA: Kluwer Academic/Plenum Publishers) (2013)

    Google Scholar 

  3. H Bruus and K Flensberg Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (New York, USA: Oxford University Press) (2004)

    Google Scholar 

  4. R Jalabert, S.D. Sarma Phys. Rev. B 40 9723 (1989)

    Article  ADS  Google Scholar 

  5. L Zheng and A MacDonald Phys. Rev. B 49 5522 (1994)

    Article  ADS  Google Scholar 

  6. K Flensberg and BY-K Hu Phys. Rev. B 52 14796 (1995)

    Article  ADS  Google Scholar 

  7. M Slutzky, O Entin-Wohlman, Y Berk, A Palevski, H Shtrikman Phys. Rev. B 53 4065 (1996)

    Article  ADS  Google Scholar 

  8. T Sahu and J Patnaik Superlatice Microst. 30 119 (2001)

    Article  ADS  Google Scholar 

  9. D Snoke, S Denev, Y Liu, L Pfeiffer, K West Nature 418 754 (2002)

    Article  ADS  Google Scholar 

  10. J Hasbun J. Phys.-Condens. Mater. 15 R143 (2003)

    Article  ADS  Google Scholar 

  11. Y Zhang, S D Sarma, Phys. Rev. B 70 035104 (2004)

    Article  ADS  Google Scholar 

  12. S D Sarma, E Hwang, E Rossi, Phys. Rev. B 81 161407 (2010)

    Article  ADS  Google Scholar 

  13. E Hwang, R Sensarma, S D Sarma Phys. Rev B. 84 245441 (2011)

    Article  ADS  Google Scholar 

  14. R Gorbachev, A Geim, M Katsnelson, K Novoselov, T Tudorovskiy, I Grigorieva, A MacDonald, S Morozov, K Watanabe, T Taniguchi Nat. Phys. 8 896 (2012)

    Article  Google Scholar 

  15. T Vazifehshenas, B Bahrami, T Salavati-fard Physica B 407 4611 (2012)

    Article  ADS  Google Scholar 

  16. S Das, R Nayak, T Sahu, A Panda J. Appl. Phys. 115 073701 (2014)

    Article  ADS  Google Scholar 

  17. T Salavati-fard, T Vazifehshenas Phys. Scr. 89 125806 (2014)

    Article  ADS  Google Scholar 

  18. T Goldzak, L Gantz, I Gilary, G Bahir, N Moiseyev Phys. Rev. B 91 165312 (2015)

    Article  ADS  Google Scholar 

  19. T Vazifehshenas, T Salavati-Fard, Physica B 462 112 (2015)

    Article  Google Scholar 

  20. R Nayak, S Das, A Panda, T Sahu Superlatice Microst. 89 75 (2016)

    Article  ADS  Google Scholar 

  21. S Saberi-Pouya, T Vazifehshenas, M Farmanbar, T Salavati-Fard J. Phys.-Condens. Mater. 28 (2016) 285301

    Article  Google Scholar 

  22. T Salavati-fard, V Rafee Physica B 481 252 (2016)

    Article  ADS  Google Scholar 

  23. S Adam, S D Sarma Phy Rev B 77 115436 (2008)

    Article  ADS  Google Scholar 

  24. E Piatti, S Galasso, M Tortello, J R Nair, C Gerbaldi, M Bruna, S Borini, D Daghero, R Gonnelli Appl. Surf. Sci. 395 37 (2017)

    Article  ADS  Google Scholar 

  25. C -H. Zhang, Y N Joglekar Phys. Rev. B 77 233405 (2008)

    Article  ADS  Google Scholar 

  26. E Hwang, S D Sarma Phys. Rev. B 80 205405 (2009)

    Article  ADS  Google Scholar 

  27. G Berdiyorov, H Bahlouli, F Peeters J Appl Phys 117 225101 (2015)

    Article  ADS  Google Scholar 

  28. B Mohan, A Kumar, P Ahluwalia Physica E 53 233 (2013)

    Article  ADS  Google Scholar 

  29. X Wang, Z Wu Phys. Chem. Chem. Phys. (2017)

  30. L Zheng, S D Sarma Phys. Rev. B 53 9964 (1996)

    Article  ADS  Google Scholar 

  31. L Zheng, S D Sarma Phys. Rev B 54 13908 (1996)

    Article  ADS  Google Scholar 

  32. E Hwang, B Y -K. Hu, S D Sarma Phy. Rev. B 76 115434 (2007)

    Article  ADS  Google Scholar 

  33. T Salavati-Fard, T Vazifehshenas Physica B 406 1883 (2011)

    Article  ADS  Google Scholar 

  34. M Polini, G Vignale, The quasiparticle lifetime in a doped graphene sheet, in: No-nonsense Physicist, Springer, 107 (2016)

  35. T Vazifehshenas, T Salavati-Fard Physica E 41 1297 (2009)

    Article  ADS  Google Scholar 

  36. T Vazifehshenas, T Salavati-fard Phys Scr 81 025701 (2010)

    Article  ADS  Google Scholar 

  37. J Shang, T Yu, J Lin, G G Gurzadyan ACS Nano 5 3278 (2011)

    Article  Google Scholar 

  38. Q Li, S D Sarma Phy. Rev. B 87 085406 (2013)

    Article  ADS  Google Scholar 

  39. E Tea, C Hin Phys. Chem. Chem. Phys. 18 22706 (2016)

    Article  Google Scholar 

  40. M Jonson J. Phys. C Solid State 9 3055 (1976)

    Article  ADS  Google Scholar 

  41. T Vazifehshenas, S Rahnama, T Salavati-Fard J. Low Temp. Phys 181 160 (2015)

    Article  ADS  Google Scholar 

  42. J Yuan, D-H. Xu, H Wang, Y Zhou, J-H Gao, F-C Zhang Phys. Rev. B 88 201109 (2013)

  43. J Reyes, M del Castillo-Mussot Phys. Status Solidi B 241 864 (2004)

    Article  ADS  Google Scholar 

  44. A Gold, L Calmels Phys. Rev. B 48 11622 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahdat Rafee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafee, V., Razeghizadeh, A. & Gharaati, A. Local field correction effects on quasi-particle inelastic scattering rate in a coupled-quantum-layers system at finite temperature. Indian J Phys 92, 1239–1243 (2018). https://doi.org/10.1007/s12648-018-1221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1221-5

Keywords

PACS Nos.

Navigation