Skip to main content
Log in

Chemical freezeout parameters within generic nonextensive statistics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The particle production in relativistic heavy-ion collisions seems to be created in a dynamically disordered system which can be best described by an extended exponential entropy. In distinguishing between the applicability of this and Boltzmann–Gibbs (BG) in generating various particle-ratios, generic (non)extensive statistics is introduced to the hadron resonance gas model. Accordingly, the degree of (non)extensivity is determined by the possible modifications in the phase space. Both BG extensivity and Tsallis nonextensivity are included as very special cases defined by specific values of the equivalence classes (cd). We found that the particle ratios at energies ranging between 3.8 and 2760 GeV are best reproduced by nonextensive statistics, where c and d range between \(\sim \,0.9\) and \(\sim \,1\). The present work aims at illustrating that the proposed approach is well capable to manifest the statistical nature of the system on interest. We don’t aim at highlighting deeper physical insights. In other words, while the resulting nonextensivity is neither BG nor Tsallis, the freezeout parameters are found very compatible with BG and accordingly with the well-known freezeout phase-diagram, which is in an excellent agreement with recent lattice calculations. We conclude that the particle production is nonextensive but should not necessarily be accompanied by a radical change in the intensive or extensive thermodynamic quantities, such as internal energy and temperature. Only, the two critical exponents defining the equivalence classes (cd) are the physical parameters characterizing the (non)extensivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A Tawfik Int. J. Mod. Phys. A 29 1430021 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. A Tawfik J. Phys. G 409 055109 (2013)

    Article  ADS  Google Scholar 

  3. R Hagedorn Nuovo Cimento Suppl 3 147 (1965)

    Google Scholar 

  4. A Tawfik Prog. Theor. Phys. 126 279 (2011)

    Article  ADS  Google Scholar 

  5. C Beck Physica A 286 164 (2000)

    Article  ADS  Google Scholar 

  6. I Bediaga, E M F Curado and J M de Miranda Physica A 286 156 (2000)

    ADS  Google Scholar 

  7. C Tsallis J. Stat. Phys. 52 479 (1988)

    Google Scholar 

  8. D Prato and C Tsallis Phys. Rev. E 60 2398 (1999)

    Article  ADS  Google Scholar 

  9. A Tawfik Eur. Phys. J. A 52 253 (2016)

  10. A Tawfik Proceedings, 38th International Conference on High Energy Physics (ICHEP 2016), Chicago, IL, USA, August 3–10 (2016)

  11. A Tawfik, H Yassin and E R Abo Elyazeed Chin. Phys. C 41 053107 (2017)

    Article  ADS  Google Scholar 

  12. J Cleymans and D Worku J. Phys. G 39 025006 (2012)

    Article  ADS  Google Scholar 

  13. M D Azmi and J Cleymans J. Phys. G 41 065001 (2014)

    Article  ADS  Google Scholar 

  14. S Abe Physica A 368 430 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. S Abe Physica A 300 417 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. S Abe Phys. Rev. E 63 061105 (2001)

    Article  ADS  Google Scholar 

  17. T S Biro and P Van Phys. Rev. E 83 061147 (2011)

    Article  ADS  Google Scholar 

  18. R Hanel and S Thurner Europhys. Lett. 93 20006 (2011)

    Article  ADS  Google Scholar 

  19. R Hanel and S Thurner Europhys. Lett. 96 50003 (2011)

    Article  ADS  Google Scholar 

  20. A Deppman Phys. Rev. D 93 054001 (2016)

    Article  ADS  Google Scholar 

  21. A Deppman Physica A 391 6380 (2012)

    Article  ADS  Google Scholar 

  22. I Sena and A Deppman AIP Conf. Proc. 1520 172 (2013)

    Article  ADS  Google Scholar 

  23. T S Biro, G G Barnafoldi and P Van Eur. Phys. J. A 49 110 (2013)

    Article  ADS  Google Scholar 

  24. E Megias, D P Menezes and A Deppman Physica A 421 15 (2015)

    Article  Google Scholar 

  25. H-T Ding, F Karsch and S Mukherjee Int. J. Mod. Phys. E 24 1530007 (2015)

    Article  ADS  Google Scholar 

  26. A Tawfik and E Abbas Phys. Part. Nucl. Lett. 12 521 (2015)

    Article  Google Scholar 

  27. A Tawfik et al. Int. J. Mod. Phys. E 24 1550067 (2015)

    Article  ADS  Google Scholar 

  28. F Karsch, K Redlich and A Tawfik Eur. Phys. J. C 29 549 (2003)

    Article  ADS  Google Scholar 

  29. F Karsch, K Redlich and A Tawfik Phys. Lett. B 571 67 (2003)

    Article  ADS  Google Scholar 

  30. K Redlich, F Karsch and A Tawfik J. Phys. G 30 S1271 (2004)

    Article  ADS  Google Scholar 

  31. A Tawfik J. Phys. G 31 S1105 (2005)

    Article  ADS  Google Scholar 

  32. A Tawfik Phys. Rev. D 71 054502 (2005)

    Article  ADS  Google Scholar 

  33. A Tawfik Fizika B 18 141 (2009)

    Google Scholar 

  34. A Tawfik and D Toublan Phys. Lett. B 623 48 (2005)

    Article  ADS  Google Scholar 

  35. A Tawfik Phys. Part. Nucl. Lett. (PEPAN), 15, 199 (2018). https://doi.org/10.1134/S1547477118030196

    Article  Google Scholar 

  36. J Letessier and J Rafelski Hadrons and Quark-Gluon Plasma (UK: Cambridge University Press) (2004)

    Google Scholar 

  37. L Ahle et al. (E866 Collaboration and E917 Collaboration) Phys. Lett. B 490 53 (2000)

  38. J L Klay et al. (E895 Collaboration) Phys. Rev. Lett. 88 102301 (2002)

  39. L Ahle et al. (E866 Collaboration and E917 Collaboration) Phys. Lett. B 476 1 (2000)

  40. A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 772 167 (2006)

    Article  ADS  Google Scholar 

  41. A Tawfik, M Y El-Bakry, D M Habashy, M T Mohamed and E Abbas Int. J. Mod. Phys. E 25 1650018 (2016)

    Article  ADS  Google Scholar 

  42. A Tawfik, H Yassin and E R Abo Elyazeed Phys. Rev. D 92 085002 (2015)

    Article  ADS  Google Scholar 

  43. A Tawfik Phys. Rev. C 88 035203 (2013)

    Article  ADS  Google Scholar 

  44. A Tawfik Nucl. Phys. A 922 225 (2014)

    Article  ADS  Google Scholar 

  45. A Tawfik Adv. High Energy Phys. 2013 574871 (2013)

    Article  MathSciNet  Google Scholar 

  46. A Tawfik Nucl. Phys. A 764 387 (2006)

    Article  ADS  Google Scholar 

  47. A Tawfik Europhys. Lett. 75 420 (2006)

    Article  ADS  Google Scholar 

  48. A Tawfik PEPAN Lett. 15 1 (2018)

    Google Scholar 

  49. P Braun-Munzinger, J Stachel, J P Wessels and N Xu Phys. Lett. B 365 1 (1996)

    Article  ADS  Google Scholar 

  50. A Tawfik, L I Abou-Salem, A G Shalaby, M Hanafy, A Sorin, O Rogachevsky and W Scheinast Eur. Phys. J. A 52 324 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Tawfik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A., Yassin, H. & Abo Elyazeed, E.R. Chemical freezeout parameters within generic nonextensive statistics. Indian J Phys 92, 1325–1335 (2018). https://doi.org/10.1007/s12648-018-1216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1216-2

Keywords

PACS Nos.

Navigation