Skip to main content
Log in

Transverse transport of Fe3O4–H2O with viscosity variation under pure internal heating

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Smart fluids are the fluids whose properties can be changed by applying an electric or a magnetic field. Such type of fluid finds tremendous applications in electronic devices, semi-active dampers, magnetic resonance imaging, in space craft propulsion and many more. This communication addresses water based magneto ferrofluid striking at a stretching surface in an oblique manner. In order to present physically realistic analysis, viscosity is assumed to be dependent upon temperature as well as volume fraction of magnetite nanoparticle. The flow governing problem is altered into nonlinear coupled system of ordinary differential equations via scaling transformation which is then solved numerically by means of Runge–kutta Fehlberg scheme. Impact of sundry parameters such as magnetic field parameter, nanoparticle volume fraction, heat generation parameter and variable viscosity parameter on velocity and temperature profile of magneto ferrofluid is presented graphically and discussed in a physical manner. Practical measures of interest namely skin friction and heat flux at the surface are computed. Streamline patterns are traced out to examine the flow pattern. It is found that skin friction and rate of heat transfer at the wall enhances by strengthening the applied magnetic field. Local heat flux can also be enhanced with increasing the volume fraction of magnetite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P D Shima, J Philip and B Raj Appl. Phys. Lett. 95 133112 (2009)

    Article  ADS  Google Scholar 

  2. W Ibrahim, B Shankar and M M Nandeppanavar Int. J. Heat Mass Transf. 56 1 (2013)

    Article  Google Scholar 

  3. A Malvandi, F Hedayati and M R H Nobari J. Appl. Fluid Mech. 7 135 (2014)

    Google Scholar 

  4. S Nadeem, R Mehmood and N S Akbar J. Comput. Theor. Nanosci. 11 1422 (2014)

    Article  Google Scholar 

  5. M Sheikholeslami, M Hatami and D D Ganji Powder Technol. 246 327 (2013)

    Article  Google Scholar 

  6. M Hatami, M Sheikholeslami, M Hosseini and D D Ganji J. Mol. Liq. 194 251 (2014)

    Article  Google Scholar 

  7. W A Khan and O D Makinde Int. J. Therm. Sci. 81 118 (2014)

    Article  Google Scholar 

  8. R Ellahi, M Hassan and A Zeeshan IEEE Trans. Nanotechnol. 14 726 (2015)

    Article  ADS  Google Scholar 

  9. R Mehmood, S Nadeem and N S Akbar J. Appl. Fluid Mech. 9 1359 (2016)

    Article  Google Scholar 

  10. S Rana, R Mehmood and N S Akbar J. Mol. Liq. 222 1010 (2016)

    Article  Google Scholar 

  11. A U Rehman, R. Mehmood and S Nadeem Appl. Therm. Eng. 112 832 (2017)

    Article  Google Scholar 

  12. R Chein and G Huang Appl. Therm. Eng. 25 3104 (2005)

    Article  Google Scholar 

  13. P Rana and R Bhargava Commun. Nonlinear Sci. Numer. Simul. 16 4318 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. S M Aminossadati and B Ghasemi Int. Commun. Heat Mass Transf. 38 672 (2011)

    Article  Google Scholar 

  15. T Hayat, T Muhammad, S A Shehzad and A Alsaedi AIP Adv. 5 https://doi.org/10.1063/1.4905780 (2015)

    Article  ADS  Google Scholar 

  16. E A Nada and A J Chamkha Int. J. Therm. Sci. 49 2339 (2010)

    Article  Google Scholar 

  17. R Ellahi Appl. Math. Model. 37 1451 (2013)

    Article  MathSciNet  Google Scholar 

  18. K Vajravelu, K V Parasad and C O Ng J. Hydrodyn. 25 1 (2013)

    Article  ADS  Google Scholar 

  19. R Ellahi, S Aziz and A Zeeshan J. Porous Media 16 205 (2013)

    Article  Google Scholar 

  20. M Sheikholeslami, M Gorji-Bandpya and D D Ganji Energy 60 501 (2013)

    Article  Google Scholar 

  21. M Sheikholeslami and D D Ganji Energy 75 400 (2014)

    Article  Google Scholar 

  22. M Sheikholeslami, D D Ganji and M M Rashidi J. Taiwan Inst. Chem. Eng. 47 6 (2014)

    Article  Google Scholar 

  23. M Akbarzadeh, S Rashidi, M Bovand and R Ellahi J. Mol. Liq. 220 1 (2016)

    Article  Google Scholar 

  24. K M Milani, M Mamourian, S Mirzakhanlari and R Ellahi J. Mol. Liq. 220 888 (2016)

    Article  Google Scholar 

  25. M Sheikoleslami and M M Bhatti Int. J. Heat Mass Transf. 109 115 (2017)

    Article  Google Scholar 

  26. M Sheikoleslami and M M Bhatti Int. J. Heat Mass Transf. 111 1039 (2017)

    Article  Google Scholar 

  27. M M Bhatti, A Zeeshan, D Tripathi and R Ellahi Indian J. Phys. 92 423 (2018)

    Article  ADS  Google Scholar 

  28. R Ellahi, A Zeeshan and M Hassan Int. J. Numer. Methods Heat Fluid Flow 26 2160 (2016)

    Article  Google Scholar 

  29. M Sheikholeslami, Q M Z Zia and R Ellahi Appl. Sci. 6 1 (2016)

    Article  Google Scholar 

  30. M M Bhatti, A Zeeshan and R Ellahi Microvescu. Res. 110 32 (2017)

    Article  Google Scholar 

  31. K M Shirvan, M Mamourian, S Mirzakhanlari and R Ellahi Powder Technol. 313 99 (2017)

    Article  Google Scholar 

  32. J A Esfahani, M Akbarzadeh, S Rashidi, M A Rosen and R Ellahi Int. J. Heat Mass Transf. 109 1162 (2017)

    Article  Google Scholar 

  33. S Rashidi, J A Esfahani and R Ellahi Appl. Sci. 7 431 (2017)

    Article  Google Scholar 

  34. M Hassan, A Zeeshan, A Majeed and R Ellahi J. Magn. Magn. Mater. 443 36 (2017)

    Article  ADS  Google Scholar 

  35. S Rashidi, M Akbar, S Bovand and R Ellahi Bovand and R Ellahi Renew. Energy 115 400 (2018)

    Article  Google Scholar 

  36. N Ijaz, A Zeeshan, M M Bhatti and R Ellahi J. Mol. Liq. 250 80 (2018)

    Article  Google Scholar 

  37. R Tabassum, R Mehmood, O Pourmehran and N S Akbar J. Process Mech. Eng. (2017). https://doi.org/10.1177/0954408917732759

  38. W A Khan, O D Makinde and Z H Khan Int. J. Heat Mass Transf. 96 525 2016

    Article  Google Scholar 

  39. T R Mahapatra and A S Gupta Heat Mass Transf. 38 517 (2002)

    Article  ADS  Google Scholar 

  40. F Labropulu and I Pop Int. J. Therm. Sci. 49 1042 (2010)

    Article  Google Scholar 

  41. J C Maxwel A Treatise on Electricity and Magnetism (Oxford : Oxford University Press) 2nd Edition p 435 (1904)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Mehmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, R., Tabassum, R. Transverse transport of Fe3O4–H2O with viscosity variation under pure internal heating. Indian J Phys 92, 1271–1280 (2018). https://doi.org/10.1007/s12648-018-1206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1206-4

Keywords

PACS Nos.

Navigation