Study of the physical discharge properties of a Ar/O2 DC plasma jet

  • A. Barkhordari
  • A. Ganjovi
  • I. Mirzaei
  • A. Falahat
Original Paper
  • 17 Downloads

Abstract

In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from \( {\text{NO }}\upgamma \left( {{\text{A}}^{2} {{\Sigma }}^{ + } \to {\text{X}}^{2} {{\Pi }}_{\text{r}} } \right) \) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.

Keywords

DC plasma jet Ar/O2 gaseous mixture Optical emission spectroscopy 

PACS Nos.

52.25.–b 52.20.–j 52.50.Dg 

References

  1. [1]
    R M Sankaran and K P Giapis Appl. Phys. Lett. 79 593 (2001)ADSCrossRefGoogle Scholar
  2. [2]
    T Ito and K Terashima Thin Solid Films 390 234 (2001)ADSCrossRefGoogle Scholar
  3. [3]
    T Ito, T Izaki and K Terashima Thin Solid Films 386 300 (2001)ADSCrossRefGoogle Scholar
  4. [4]
    R M Sankaran and K P Giapis J. Appl. Phys. 92 2406 (2002)ADSCrossRefGoogle Scholar
  5. [5]
    Y Shimizu, T Sasaki, T Ito, K Terashima and N Koshizaki J. Phys. D Appl. Phys. 36 2940 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    T Kikuchi, Y Hasegawa and H Shirai J. Phys. D Appl. Phys. 37 1537 (2004)ADSCrossRefGoogle Scholar
  7. [7]
    T Ichiki, R Taura and Y Horiike J. Appl. Phys. 95 35 (2004)ADSCrossRefGoogle Scholar
  8. [8]
    Y Shimizu, T Sasaki, C Liang, A C Bose, T Ito, K Terashima and N Koshizaki Chem. Vap. Depos. 11 244 (2005)CrossRefGoogle Scholar
  9. [9]
    Y Shimizu, T Sasaki, A C Bose, K Terashima and N Koshizaki Surf. Coat. Technol. 200 4251 (2006)CrossRefGoogle Scholar
  10. [10]
    H Shirai, T Kobayashi and Y Hasegawa Appl. Phys. Lett. 87 143112 (2005)Google Scholar
  11. [11]
    Y Shimizu, A C Bose, T Sasaki, D Mariotti, K Kirihara, T Kodaira, K Terashima and N Koshizaki Trans. Mater. Res. Soc. Jpn. 31 463 (2006)Google Scholar
  12. [12]
    M Laroussi Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology (Cambridge: Cambridge University) (2012)Google Scholar
  13. [13]
    S Salehi, A Shokri, M Reza Khani, M Bigdeli and B Shokri Biointerphases 10 029504 (2015)CrossRefGoogle Scholar
  14. [14]
    T G Klampfl, T Shimizu, S Koch, M Balden, S Gemein, Y F Li, A Mitra, J L Zimmermann, J Gebel, G E Morfill and H U Schmidt Plasma Processes Polym. 11 974 (2014)CrossRefGoogle Scholar
  15. [15]
    P Babington, K Rajjoub, J Canady, A Siu, M Keidar and J H Sherman Biointerphases 10 029403 (2015)CrossRefGoogle Scholar
  16. [16]
    Y Wu, Y Liang, K Wei, W Li, M Yao and J Zhang Environ. Sci. Technol. 48 2901 (2014)CrossRefGoogle Scholar
  17. [17]
    M Habib, T L Hottel and L Hong Clin. Plasma Med. 2 17 (2014)ADSCrossRefGoogle Scholar
  18. [18]
    N NathMisra, K M Keener, P Bourke, J P Mosnier and P J Cullen J. Biosci. Bioeng. 118 177 (2014)CrossRefGoogle Scholar
  19. [19]
    X Lu, M Laroussi and V Puech Plasma Sources Sci. Technol. 21 034005 (2012)ADSGoogle Scholar
  20. [20]
    K Kutasi, V Guerra and P A Sa Plasma Sources Sci. Technol. 20 035006 (2011)Google Scholar
  21. [21]
    K Kutasi, V Guerra and P A Sa J. Phys. D Appl. Phys. 43 175201 (2010)ADSCrossRefGoogle Scholar
  22. [22]
    J T Gudmundsson, T Kimura and M A Lieberman Plasma Sources Sci. Technol. 8 22 (1999)Google Scholar
  23. [23]
    J T Gudmundsson and E G Thorsteinsson Plasma Sources Sci. Technol. 16 399 (2007)ADSCrossRefGoogle Scholar
  24. [24]
    L Moravský, M Klas, S Matejcik and E Machova 22nd Annual Conference on Doctoral Students on Plasma Physics (2013)Google Scholar
  25. [25]
    M K Khalaf, I R Agool and S H Abd Muslim Int. J. Appl. Inn. Eng. Manag. 3 113 (2014)Google Scholar
  26. [26]
    S Ono, T Suganuma and Y Suzuki 19th International Symposium on Plasma Chemistry (2009)Google Scholar
  27. [27]
    K Wagatsuma and H Kichinosuke Anal. Chim. Acta 306 193 (1995)CrossRefGoogle Scholar
  28. [28]
    J Ying, R Chunsheng, Y Liang, Z Jialiang and W Dezhen Plasma Sci. Technol. 15 1203 (2013)Google Scholar
  29. [29]
    E Stoffels, A J Flikweert, W W Stoffels and G W Kroesen Plasma Sources Sci. Technol. 11 383 (2002)Google Scholar
  30. [30]
    C O Laux Ph.D. Thesis (Stanford University, USA) (1993)Google Scholar
  31. [31]
    C O Laux, T G Spence, C H Kruger and R N Zare Plasma Sources Sci. Technol. 12 125 (2003)Google Scholar
  32. [32]
    M Jasinski, J Mizeraczyk and Z Zakrzewski 15th International Conference on Gas Discharges and Their Applications (2004)Google Scholar
  33. [33]
    S N Siadati, F Sohbatzadeh and V Omran Phys. Plasmas 24 6 (2017)Google Scholar
  34. [34]
    C Tendero, C Tixier, P Tristant, J Desmaison and P Leprince Spectrochim. Acta B 61 2 (2006)CrossRefGoogle Scholar
  35. [35]
    M D Calzada, A Rodero, A Sola and A Gamero J. Phys. Soc. Jpn. 65 948 (1996)ADSCrossRefGoogle Scholar
  36. [36]
    T Fujimoto and R W P McWhirter Phys. Rev. A 42 6588 (1990)ADSCrossRefGoogle Scholar
  37. [37]
    Z Machala, M Janda, K Hensel, I Jedlovský, L Leštinská, V Foltin, V Martišovitš and M Morvova J. Mol. Spectrosc. 243 194 (2007)ADSCrossRefGoogle Scholar
  38. [38]
    T Sakamoto, H Matsuura and H Akatsuka J. Appl. Phys. 2 023307 (2007)ADSCrossRefGoogle Scholar
  39. [39]
    D Wang, D Zhao, K Feng, X Zhang, D Liu and S Yang Appl. Phys. Lett. 16 161501 (2011)Google Scholar
  40. [40]
    Z Machala, M Morvova, E Marode and I Morva J. Phys. D Appl. Phys. 33 3198 (2000)ADSCrossRefGoogle Scholar
  41. [41]
    L Schmiedt, A Kaňka and V Hrachová 22nd Annual Conference on Doctoral Students on Plasma Physics (2008)Google Scholar
  42. [42]
    N Haraki, S Nakano, S Ono and S Teii Electr. Eng. Jpn. 149 14 (2004)CrossRefGoogle Scholar
  43. [43]
    G Herzberg Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules (New York: Van Nostrand) (1950)Google Scholar
  44. [44]
    G Gardet, G Moulard, M Courbon, F Rogemond and M Druetta Meas. Sci. Technol. 11 333(2000)ADSGoogle Scholar
  45. [45]
    D E Shemansky and A L Broadfoot J. Quant. Spectrosc. Radiat. Transf. 10 1385 (1971)ADSCrossRefGoogle Scholar
  46. [46]
    M D Calzada, M Moisan, A Gamero and A Sola J. Appl. Phys. 80 46 (1996)ADSCrossRefGoogle Scholar
  47. [47]
    D Staack, B Farouk, A Gutsol and A Fridman Plasma Sources Sci. Technol. 14 700 (2005)Google Scholar
  48. [48]
    S Pandhija and A K Rai Appl. Phys. B 94 545 (2009)ADSCrossRefGoogle Scholar
  49. [49]
    National Institute of Standards and Technology 1979–2008 NIST: Atomic Spectra Data Base (Gaithersburg, MD: NIST Physics Laboratory) and http://physics.nist.gov/PhysRefData/ASD
  50. [50]
    H R Griem Plasma Spectroscopy (New York: McGraw-Hill) (1964)Google Scholar
  51. [51]
    J Torres, M J van de Sande, J van der Mullen, A Gamero and A Sola Spectrochim. Acta B 61 58 (2006)CrossRefGoogle Scholar
  52. [52]
    R Eisberg and R Resnick Quantum Physics of Atoms, Molecule, Solids, Nuclei and Particles (Rio de Janeiro: Elsevier) (1979)Google Scholar
  53. [53]
    A Y Nikiforov, C Leys, M A Gonzalez and J L Walsh Plasma Sources Sci. Technol. 24 034001 (2015)Google Scholar
  54. [54]
    M Qian, C Ren, D Wang, J Zhang and G Wei J. Appl. Phys. 107 063303 (2010)ADSCrossRefGoogle Scholar
  55. [55]
    S G Belostotskiy, T Ouk, V M Donnelly, D J Economou and N Sadeghi J. Appl. Phys. 107 053305 (2010)ADSCrossRefGoogle Scholar
  56. [56]
    F J Mehr and M A Biondi Phys. Rev. 176 322 (1968)ADSCrossRefGoogle Scholar
  57. [57]
    M A Gigosos and V Cardenoso J. Phys. B 29 4795 (1996)ADSCrossRefGoogle Scholar
  58. [58]
    M K Khalaf Ph.D. Thesis (University of Baghdad, Iraq) (2010)Google Scholar
  59. [59]
    M Imran, N U Rehman, A W Khan, M Zaka-ul-Islam, M Shafiq and M Zakaullah Radiat. Phys. Chem. 123 115 (2016)ADSGoogle Scholar
  60. [60]
    M A Lieberman and A J Lichtenberg Principles of Plasma Discharge and Materials Processing (New York: Wiley) (1994)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • A. Barkhordari
    • 1
  • A. Ganjovi
    • 1
  • I. Mirzaei
    • 1
  • A. Falahat
    • 2
  1. 1.Photonics Research InstituteGraduate University of Advanced TechnologyKermanIran
  2. 2.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations