Advertisement

Indian Journal of Physics

, Volume 92, Issue 8, pp 1009–1016 | Cite as

Dependence of synchronization transitions on mean field approach in two-way coupled neural system

  • J C Shi
  • M Luo
  • C S Huang
Original Paper
  • 120 Downloads

Abstract

This work investigates the synchronization transitions in two-way coupled neural system by mean field approach. Results show that, there exists a critical noise intensity for the synchronization transitions, i.e., above (or below) the critical noise intensity, the synchronization transitions are decreased (or hardly change) with increasing the noise intensity. Meanwhile, the heterogeneity effect plays a negative role for the synchronization transitions, and above critical coupling strength, the heterogeneity effect on synchronization transitions can be negligible. Furthermore, when an external signal is introduced into the coupled system, the novel frequency-induced and amplitude-induced synchronization transitions are found, and there exist an optimal frequency and an optimal amplitude of external signal which makes the system to display the best synchronization transitions. In particular, it is observed that the synchronization transitions can not be further affected above critical frequency of external signal.

Keywords

Synchronization transitions Mean field approach Coupled neurons 

PACS Nos.

05.40.-a 02.50.-r 05.45.Xt 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province No: 2013GXNSFAA019019 and the Natural Science Foundation of Guangxi Province No: 2013GXNSFAA019041.

References

  1. [1]
    J Y Qu, R B Wang, C K Yan and Y Du Cognit. Neurodyn. 8 157 (2014)CrossRefGoogle Scholar
  2. [2]
    M Uzuntarla, E Yilmaz, A Wagemakers and M Ozer Commun. Nonlinear Sci. Numer. Simul. 22 367 (2015)MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    E Yilmaz, V Baysal and M Ozer Phys. Lett. A 379 1594–1599 (2015)CrossRefADSGoogle Scholar
  4. [4]
    R Uzun, E Yilmaz and M Ozer Physica A 486 386 (2017)MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    Y N Wu, Y B Gong and Q Wang. Eur. Phys. J. B 87 198 (2014)CrossRefADSGoogle Scholar
  6. [6]
    E B M Ngouonkadi, H B Fotsin, M K Nono and P H L Fotso Cognit. Neurodyn. 10 385 (2016)CrossRefGoogle Scholar
  7. [7]
    X Zhang, J Yang, F P Wu, W J Wu, M Jiang, L Chen, H J Wang, G X Qi and H B Huang Eur. Phys. J. E 37 53 (2014)CrossRefGoogle Scholar
  8. [8]
    E Steur, T Oguchi, C van Leeuwen and H Nijmeijer Chaos 22 043144 (2012)MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    H T Yu, J Wang, Q X Liu, J X Wen, B Deng and X L Wei Chaos 21 043125 (2011)CrossRefADSGoogle Scholar
  10. [10]
    E B M Ngouonkadi, M K Nono, V K Tamba and H B Fotsin Eur. Phys. J. B 88 299 (2015)CrossRefADSGoogle Scholar
  11. [11]
    B K Bera, S Majhi, D Ghosh and M Perc Europhys. Lett. 118 10001 (2017)CrossRefADSGoogle Scholar
  12. [12]
    S Rakshit, B K Bera, M Perc and D Ghosh Sci. Rep. 7 2412 (2017)CrossRefADSGoogle Scholar
  13. [13]
    S Majhi, M Perc, D Ghosh Sci. Rep. 6 39033 (2016)CrossRefADSGoogle Scholar
  14. [14]
    Q Y Wang, H H Zhang and G R Chen Eur. Phys. J. B 86 301 (2013)CrossRefADSGoogle Scholar
  15. [15]
    H H Zhang, Q Y Wang, M Perc and G R Chen Commun. Nonlinear Sci. Numer. Simul. 18 601 (2013)MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    Y H Hao, Y B Gong, L Wang, X G Ma and C L Yang Chaos Solitons Fractals 44 260 (2011)MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    G P Wang, W Y Jin and A Wang Nonlinear Dyn. 81 1453 (2015)CrossRefGoogle Scholar
  18. [18]
    X J Sun, J Z Lei, M Perc, J Kurths and G R Chen Chaos 21 016110 (2011)CrossRefADSGoogle Scholar
  19. [19]
    Q Y Wang, Q S Lu and G R Chen Int. J. Bifurc. Chaos 18 1189 (2008)CrossRefGoogle Scholar
  20. [20]
    Y N Wu, Y B Gong and Q Wang Eur. Phys. J. B 87 198 (2014)CrossRefADSGoogle Scholar
  21. [21]
    Q Wang, Y B Gong and H Y Li Nonlinear Dyn. 81 1689 (2015)CrossRefGoogle Scholar
  22. [22]
    Q Y Wang, Z S Duan, M Perc and G R Chen Europhys. Lett. 83 50008 (2008)CrossRefADSGoogle Scholar
  23. [23]
    Q Y Wang, M Perc, Z S Duan and G R Chen Phys. Rev. E 80 026206 (2009)CrossRefADSGoogle Scholar
  24. [24]
    Q Y Wang, M Perc, Z S Duan and G R Chen Physica A 389 3299 (2010)CrossRefADSGoogle Scholar
  25. [25]
    Q Y Wang, G R Chen, and M Perc PLoS ONE 6 e15851 (2011)CrossRefADSGoogle Scholar
  26. [26]
    E Yilmaz, M Ozer, V Baysal and M Perc Sci. Rep. 6 30914 (2016)CrossRefADSGoogle Scholar
  27. [27]
    X J Sun, M Perc and J Kurths. Chaos 27 053113 (2017)MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    C J Wang, M Yi, K L Yang and L J Yang BMC Syst. Biol. 6(Suppl 1) S9 (2012)CrossRefGoogle Scholar
  29. [29]
    D Gonze, S Bernard, C Waltermann, A Kramer and H Herzel Biophys. J. 89 120 (2005)CrossRefGoogle Scholar
  30. [30]
    D Wu and Y Jia Biophys. Chem. 125 247 (2007)CrossRefGoogle Scholar
  31. [31]
    R A FitzHugh Biophys. J. 1 445 (1961)CrossRefADSGoogle Scholar
  32. [32]
    Y Wang and Q S Li Biophys. Chem. 136 32 (2008)CrossRefGoogle Scholar
  33. [33]
    J J Collins, C C Chow and T T Imhoff Nature 376 236 (1995)CrossRefADSGoogle Scholar
  34. [34]
    Y J Jiang and H W Xin Phys. Rev. E 62 1846 (2000)CrossRefADSGoogle Scholar
  35. [35]
    Y P Li and Q S Li Chem. Phys. Lett. 417 498 (2006)CrossRefADSGoogle Scholar
  36. [36]
    C S Zhou, J Kurths and B Hu Phys. Rev. Lett. 87 098101 (2001)CrossRefADSGoogle Scholar
  37. [37]
    L Gammaitoni, M Löcher, A R Bulsara, P Hanggi, J Neff, K Wiesenfeld, W Ditto and M E Inchiosa Phys. Rev. Lett. 82 4574 (1999)CrossRefADSGoogle Scholar
  38. [38]
    J C Shi and Q S Li Int. J. Theor. Phys. 46 2351 (2007)CrossRefGoogle Scholar
  39. [39]
    G P Wang, W Y Jin and A Wang Nonlinear Dyn. 81 1453 (2015)CrossRefGoogle Scholar
  40. [40]
    K Yu, J Wang, B Deng and X L Wei Cognit. Neurodyn. 7 237 (2013)CrossRefGoogle Scholar
  41. [41]
    Y N Wu, Y B Gong and Q Wang Physica A 421 347 (2015)CrossRefADSGoogle Scholar
  42. [42]
    J C Shi, M Luo and T Dong Biosystems 98 85 (2009)CrossRefGoogle Scholar
  43. [43]
    O V Popovych, C Hauptmann and P A Tass Biol. Cybernet. 95 69 (2006)MathSciNetCrossRefGoogle Scholar
  44. [44]
    C G Rusin, S E Johnson, J Kapur and J L Hudson Phys. Rev. E 84 066202 (2011)CrossRefADSGoogle Scholar
  45. [45]
    Q Wang, Y B Gong and Y N Wu Eur. Phys. J. B 88 103 (2015)CrossRefADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.College of Chemistry and Material SciencesGuangxi Teachers Education UniversityNanningChina

Personalised recommendations