Indian Journal of Physics

, Volume 92, Issue 7, pp 893–899 | Cite as

Studies on two neutrino double beta decay

  • M. K. Preethi Rajan
  • R. K. Biju
  • K. P. Santhosh
Original Paper
  • 34 Downloads

Abstract

The study aimed to develop an empirical formula for phase space factor and nuclear matrix element to analyse two neutrino double beta decay. The present work also extended to compute phase space factor using Primakoff–Rosen approximation. Using these two formulae for phase space factors we have computed two neutrino double beta decay half lives. Comparisons of the calculated half lives with the corresponding experimental values are also done. The empirical formula predictions are found to be in good agreement with the experimental data. The empirical formula is applied to various isotopes exhibiting single beta decay and our prediction on the possibility of two neutrino double beta decay will be very useful for the future experiments.

Keywords

Two neutrino double beta decay Phase space factor Nuclear matrix element 

PACS Nos.

23.40.-s 21.10.Tg 14.60.Pq 

References

  1. [1]
    A S Barabash Phys. At. Nucl. 74 603(2011)ADSCrossRefGoogle Scholar
  2. [2]
    S P Rosen and H Primakoff Rep. Prog. Phys. 22 121 (1959)ADSCrossRefGoogle Scholar
  3. [3]
    D Bryman and C Picciotto Rev. Mod. Phys. 50 11 (1978)ADSCrossRefGoogle Scholar
  4. [4]
    H Primakoff and S P Rosen Ann. Rev. Nucl. Part. Sci. 31 145 (1981)ADSCrossRefGoogle Scholar
  5. [5]
    W C Haxton, G J Jr Stephenson Prog. Part. Nucl. Phys. 12 409 (1984)ADSCrossRefGoogle Scholar
  6. [6]
    M Doi, T Kotani and E Takasugi Prog. Theor. Phys. Suppl. 83 1 (1985)ADSCrossRefGoogle Scholar
  7. [7]
    M Doi and T Kotani Prog. Theor. Phys. 87 1207 (1992)ADSCrossRefGoogle Scholar
  8. [8]
    M Doi and T Kotani Prog. Theor. Phys. 89 139 (1993)ADSCrossRefGoogle Scholar
  9. [9]
    J D Vergados Nucl. Phys. B218 109 (1983); Phys. Rep. 133 1 (2002)ADSCrossRefGoogle Scholar
  10. [10]
    A Faessler Prog. Part. Nucl. Phys. 21 183 (1988)ADSCrossRefGoogle Scholar
  11. [11]
    T Tomoda Rep. Prog. Phys. 54 53 (1991)ADSCrossRefGoogle Scholar
  12. [12]
    F Boehm and P Vogel Ann. Rev. Nucl. Part. Sci . 34 125 (1984)ADSCrossRefGoogle Scholar
  13. [13]
    F Boehm and P Vogel Physics of Massive Neutrinos, 2nd ed. (Cambridge: Cambridge University Press) (1992)CrossRefGoogle Scholar
  14. [14]
    M K Moe and P Vogel Ann. Rev. Nucl. Part. Sci. 44 247 (1994)ADSCrossRefGoogle Scholar
  15. [15]
    K Zuber Phys. Rep. 305 295 (1998)ADSCrossRefGoogle Scholar
  16. [16]
    E Fiorini Phys. Rep. 307 309 (1998)ADSCrossRefGoogle Scholar
  17. [17]
    J Suhonen and O Civitarese Phys. Rep. 300 123 (1998)ADSCrossRefGoogle Scholar
  18. [18]
    A Faessler and F Simkovic J. Phys. G Nucl. Part. Phys. 24 2139 (1998)ADSCrossRefGoogle Scholar
  19. [19]
    H Ejiri Phys. Rep . 338 265 (2000)ADSCrossRefGoogle Scholar
  20. [20]
    H V Klapdor-Kleingrothaus Sixty Years of Double Beta Decay (Singapore: World Scientific) (2001)Google Scholar
  21. [21]
    S R Elliott and P Vogel Ann. Rev. Nucl. Part. Sci. 52 115 (2002)ADSCrossRefGoogle Scholar
  22. [22]
    S R Elliott and J Engel J. Phys. G Nucl. Part. Phys. 30 R183 (2004)ADSCrossRefGoogle Scholar
  23. [23]
    E Caurier, A P Zuker, A Poves and G Martinez-Pinedo Phys. Rev. C50 225 (1994)Google Scholar
  24. [24]
    E Caurier, J Menendez, F Nowacki and A Poves Phys. Rev. Lett. 100 052503 (2008)ADSCrossRefGoogle Scholar
  25. [25]
    M Horoi, S Stoica and B A Brown Phys. Rev. C75 034303 (2007)Google Scholar
  26. [26]
    V A Rodin, A Faessler, F Simkovic, P Vogel Phys. Rev. C68 044302 (2003)Google Scholar
  27. [27]
    F Simkovic, A Faessler, H Muther, V A Rodin and M Stauf Phys. Rev. C79 055501 (2009)Google Scholar
  28. [28]
    D L Fang, A Faessler, V A Rodin and F Simkovic Phys. Rev. C83 034320 (2011)Google Scholar
  29. [29]
    V A Rodin, A Faessler, F Simkovic and P Vogel Nucl. Phys. A766 107 (2006)Google Scholar
  30. [30]
    M Kortelainen and J Suhonen Phys. Rev. C75 051203R (2007)ADSCrossRefGoogle Scholar
  31. [31]
    M Kortelainen and J Suhonen Phys. Rev. C76 024315 (2007)ADSCrossRefGoogle Scholar
  32. [32]
    F Simkovic, A Faessler, V A Rodin, P Vogal and J Engel Phys. Rev. C77 045503 (2008)Google Scholar
  33. [33]
    A S Barabash JETP Lett. 68 1 (1998)ADSCrossRefGoogle Scholar
  34. [34]
    A S Barabash Eur. Phys. J. A8 137 (2000)Google Scholar
  35. [35]
    A S Barabash Astrophys. Space Sci. 283 169 (2003)CrossRefGoogle Scholar
  36. [36]
    A Giuliani and A Poves Adv. High Energy Phys. 2012 857016 (2012)CrossRefGoogle Scholar
  37. [37]
    J Beringer, J Arguin, R Barnett, K Copic, O Dahl, D Groom, C Lin, J Lys, H Murayama, C G Wohl, W M Yao, P A Zyla, C Amsler, M Antonelli, D M Asner, H Baer, H RBand, T Basaglia, C W Bauer, J J Beatty, V I Belousov, E Bergren, G Bernardi, W Bertl, S Bethke, H Bichsel, O Biebel, E Blucher, S Blusk and G Brooijmans Phys. Rev. D86 631 (2012)Google Scholar
  38. [38]
    E Majorana Nuovo Cim. 14 171 (1937)Google Scholar
  39. [39]
    S R Elliott, A A Hahn and M K Moe Phys. Rev. Lett. 59 2020 (1987)Google Scholar
  40. [40]
    P Vogel arXiv:1992v1, 1208 (2012)
  41. [41]
    M Doi, T Kotani, H Nishiura, K Okuda and E Takasugi Prog. Theor. Phys. 66 1739 (1981)ADSCrossRefGoogle Scholar
  42. [42]
    M Doi, T Kotani, H Nishiura and E Takasugi Prog. Theor. Phys. 69 602 (1983)ADSCrossRefGoogle Scholar
  43. [43]
    H Primakoff and S P Rosen Rep. Prog. Phys. 22 121 (1959)ADSCrossRefGoogle Scholar
  44. [44]
    E J Konopinski Theory of Beta Radioactivity (London: Oxford University Press) (1966)Google Scholar
  45. [45]
    J Kotila and F Iachello Phys. Rev. C85 034316 (2012)ADSCrossRefGoogle Scholar
  46. [46]
    S Stoica and M Mirea Phys. Rev. C88 037303 (2013)ADSCrossRefGoogle Scholar
  47. [47]
    R Saakyan Annu. Rev. Nucl. Part. Sci. 63 503 (2013)ADSCrossRefGoogle Scholar
  48. [48]
    F T Avignone III, S R Elliott and J Engel Rev. Mod. Phys. 80 481 (2008)ADSCrossRefGoogle Scholar
  49. [49]
    E Caurier, F Nowacki and A Poves Phys. Lett. B711 62 (2012)ADSCrossRefGoogle Scholar
  50. [50]
    J Barea and F Iachello Phys. Rev. C79 044301 (2009)ADSCrossRefGoogle Scholar
  51. [51]
    G Audi, A H Wapstra and C Thivault Nucl. Phys. A729 337 (2003)Google Scholar
  52. [52]
    Y Ren and Z Ren Phys. Rev. C89 064603 (2014)Google Scholar
  53. [53]
    J Suhonen and M Kortelainen Rev. Mex. 50S2 112 (2004)Google Scholar
  54. [54]
    W A Richter, M G Van der Merwe, R E Julies and B A Brown Nucl. Phys. A523 325 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • M. K. Preethi Rajan
    • 1
  • R. K. Biju
    • 2
  • K. P. Santhosh
    • 1
  1. 1.School of Pure and Applied PhysicsKannur UniversityPayyanurIndia
  2. 2.Department of PhysicsPazhassi Raja N S S CollegeMattanurIndia

Personalised recommendations