Indian Journal of Physics

, Volume 92, Issue 7, pp 855–864 | Cite as

Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys

Original Paper
  • 62 Downloads

Abstract

Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk’s modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K−2 m−1 s−1 at an optimal concentration of 1018 cm−3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.

Keywords

Heusler alloys Half-metal Ferromagnetic alloys Electronic structure Thermoelectric effect 

PACS Nos.

71.20.Be 71.15.Mb 72.15.Jf 72.15.Lh 72.25.-b 

References

  1. [1]
    D M Rowe (ed.) CRC Handbook of Thermoelectrics (Boca Raton: CRC) (1995)Google Scholar
  2. [2]
    K Matsubara in International Conference on Thermoelectrics, p 418 (2002)Google Scholar
  3. [3]
    I H Bhat, S Yousuf, T M Bhat and D C Gupta J. Magn. Magn. Mater. 395 81 (2015)ADSCrossRefGoogle Scholar
  4. [4]
    T M Bhat and D C Gupta RSC Adv. 6 80302 (2016)CrossRefGoogle Scholar
  5. [5]
    S A Khandy and D C Gupta RSC Adv. 6 97641 (2016)CrossRefGoogle Scholar
  6. [6]
    G Chen, M S Dresselhaus, G Dresselhaus, J P Fleurial and T Caillat Int. Mater. Rev. 48 45 (2003)CrossRefGoogle Scholar
  7. [7]
    C Uher in Thermoelectric Materials Research I Semiconductors and Semimetals Series 69 (ed.) T Tritt (Amsterdam: Elsevier) pp 139–253 (2001)CrossRefGoogle Scholar
  8. [8]
    G S Nolas, J Poon and M Kanatzidis Mater. Res. Soc. Bull. 31 199 (2006)CrossRefGoogle Scholar
  9. [9]
    C Wood Rep. Prog. Phys. 51 459 (1988)ADSCrossRefGoogle Scholar
  10. [10]
    J P Heremans et al. Science 321 554 (2008)ADSCrossRefGoogle Scholar
  11. [11]
    K F Hsu et al. Science 303 818 (2004)ADSCrossRefGoogle Scholar
  12. [12]
    P Blaha, K Schwarz, P Sorantin and S B Trickey Comput. Phys. Commun. 59 399 (1990)ADSCrossRefGoogle Scholar
  13. [13]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  14. [14]
    P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2 k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (arlheinz Schwarz, Austria: Techn. Universität Wien), ISBN 3-9501031-1-2, (2001)Google Scholar
  15. [15]
    S L Dudarev, G A Botton, S Y Savrasov, C J Humphreys and A P Sutton Phys. Rev. B 57 1505 (1998)ADSCrossRefGoogle Scholar
  16. [16]
    I Galanakis, P H Dederichs, and N Papanikolaou Phys. Rev. B 66 174429 (2002)ADSCrossRefGoogle Scholar
  17. [17]
    X Dai, G Liu, L Chen, J Chen and G Wu Solid State Commun. 140 533 (2006)ADSCrossRefGoogle Scholar
  18. [18]
    S Yousuf and D C Gupta Mater. Chem. Phys. 192 33 (2017)CrossRefGoogle Scholar
  19. [19]
    V V Surikov, V N Zhordochkin and T Y Astakhova Hyperfine Interact. 59 469 (1990)ADSCrossRefGoogle Scholar
  20. [20]
    N Lakshmi, A Pandey and K Venugopalan Bull. Mater. Sci. 25 309 (2002)CrossRefGoogle Scholar
  21. [21]
    H Z Luo, H W Zhang, Z Y Zhu, L Ma, S F Xu, G H Wu, X X Zhu, C B Jiang and H B Xu J. Appl. Phys. 103 083908 (2008)ADSCrossRefGoogle Scholar
  22. [22]
    J C Phillips and J A van Vechten Phys. Rev. B 2 2147 (1970)ADSCrossRefGoogle Scholar
  23. [23]
    J C Slater Phys. Rev. 49 931 (1936)ADSCrossRefGoogle Scholar
  24. [24]
    S Yousuf and D C Gupta J. Phys. Chem. Solids 108 109 (2017), S Yousuf and D C Gupta Mater. Res. Express 4 116307 (2017)Google Scholar
  25. [25]
    S Yousuf and D C Gupta Indian J. Phys. 91 33 (2017)ADSCrossRefGoogle Scholar
  26. [26]
    S A Khandy and D C Gupta RSC Adv. 6 48009 (2016)CrossRefGoogle Scholar
  27. [27]
    D Pettifor Mater. Sci. Technol. 8 345 (1992)CrossRefGoogle Scholar
  28. [28]
    M E Fine, L D Brown and H L Marcus Scr. Metall. 18 951 (1984)CrossRefGoogle Scholar
  29. [29]
    Sanvito et al. Sci. Adv. 3 e1602241 (2017)ADSCrossRefGoogle Scholar
  30. [30]
    D J Singh Phys. Rev. B Condens. Matter Mater. Phys. 81 1 (2010)ADSGoogle Scholar
  31. [31]
    S Yousuf and D C Gupta Mater. Sci. Eng. B 221 73 (2017)CrossRefGoogle Scholar
  32. [32]
    T J Scheidemantel, C Ambrosch-Draxl, T Thonhauser, J V Badding and J O Sofo Phys. Rev. B 68 125210 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Condensed Matter Theory Group, School of Studies in PhysicsJiwaji UniversityGwaliorIndia

Personalised recommendations