Indian Journal of Physics

, Volume 92, Issue 7, pp 847–854 | Cite as

First principle calculations of structural, electronic and magnetic properties of cubic GdCrO3 Perovskite

  • Sabria TerkhiEmail author
  • Samir Bentata
  • Zoubir Aziz
  • Tayeb Lantri
  • Boucif Abbar
Original Paper


The structural, electronic and magnetic properties of the cubic GdCrO3 perovskite are investigated by mean the full-potential linearized augmented plane wave method based on the density functional theory. We have used three approximations: the generalized gradient (GGA), the GGA + U, where U is on-site Coulomb interaction correction, and the modified Becke–Johnson (mBJ-GGA). Calculated Lattice parameters are where found to be in a very good agreement with experimental measurements. Our results of spin-polarized band structure and density of states show a metallic character of GdCrO3 when using the GGA scheme, whereas a half-metallic ferromagnetic behavior is observed in both cases of GGA + U and mBJ-GGA approaches with an important total magnetic moment of 10.00 μB. The obtained results show that GdCrO3 is an excellent candidate to spintronic applications.


GdCrO3 perovskites Structural, electronic and magnetic properties First-principles calculations Spintronic application 


75.40.Mg 74.25.Jb 74.25.Gz 


  1. [1]
    H P R Frederikse, W R Thurber and W R Hosler Phys. Rev. 134 A442 (1964)ADSCrossRefGoogle Scholar
  2. [2]
    C B Samantaray, H Sim and H Hwang Phys. B 351 158 (2004)ADSCrossRefGoogle Scholar
  3. [3]
    J G Bednorz and K A Muller Phys. Rev. Lett. 52 2289 (1984)ADSCrossRefGoogle Scholar
  4. [4]
    C B Samantaray, H Sim and H Hwang J. Microelectron. 36 725 (2005)CrossRefGoogle Scholar
  5. [5]
    A J Millis, B I Shraiman and R Mueller Phys. Rev. Lett. 77 175 (1996)ADSCrossRefGoogle Scholar
  6. [6]
    Y Tokura Colossal magnetoresistive oxides (Amsterdam: Gordon and Breach Science Publishers) (2000)Google Scholar
  7. [7]
    H Wang, B Wang, Q Li, Z Zhu, R Wang and C H Woo Phys. Rev. B 75 245209 (2007)ADSCrossRefGoogle Scholar
  8. [8]
    P Baettig, C F Schelle, R LeSar, U V Waghmare and N A Spaldin Chem. Mater. 17 1376 (2005)CrossRefGoogle Scholar
  9. [9]
    X J Liu, Z J Wu, X F Hao, H P Xiang and J Meng Chem. Phys. Lett. 416 7 (2005)ADSCrossRefGoogle Scholar
  10. [10]
    I Zutic, J Fabian and S D Sarma Rev. Mod. Phys. 76 323 (2004)ADSCrossRefGoogle Scholar
  11. [11]
    M Karaca, S Kervan and N Kervan J. Alloys Compd. 639 162 (2015)CrossRefGoogle Scholar
  12. [12]
    D B Meadowcraft, P G Meier and A C Warren Energy Convers. 12 145 (1972)CrossRefGoogle Scholar
  13. [13]
    K Cico, K Husekova, M Tapajna, D Gregusova, R Stoklas, J Kuzmik, J F Carlin, N Grandjean, D Pogany and K Frohlich J. Vac. Sci. Technol. B 29 01A808 (2011)CrossRefGoogle Scholar
  14. [14]
    B Bouadjemi, S Bentata, A Abbad, W Benstaali and B Bouhafs Solid State Commun. 168 6 (2013)ADSCrossRefGoogle Scholar
  15. [15]
    A Abbad, W Benstaali, H A Bentounes, S Bentata and Y Benmalem Solid State Commun. 228 36 (2016)ADSCrossRefGoogle Scholar
  16. [16]
    B Bouadjemi, S Bentata, A Abbad and W Benstaali Solid State Commun. 207 9 (2015)ADSCrossRefGoogle Scholar
  17. [17]
    B Merabet, Y Al-Douri, H Abid and A H Reshak J. Mater. Sci. 48 758 (2013)ADSCrossRefGoogle Scholar
  18. [18]
    S Nazir, N Ikram, S A Siddiqi, Y Saeed, A Shaukat and A H Reshak Curr Opin Solid State Mater. Sci. 14 1 (2010)ADSCrossRefGoogle Scholar
  19. [19]
    Y Saeed, S Nazir, A Shaukat and A H Reshak J. Magn. Magn. Mater. 322 3214 (2010)ADSCrossRefGoogle Scholar
  20. [20]
    H S Saini, M Singh, A H Reshak and M K Kashyap J. Alloys. Compd. 536 214 (2012)CrossRefGoogle Scholar
  21. [21]
    H S Saini, M Singh, A H Reshak and M K Kashyap Comput. Mater. Sci. 74 114 (2013)CrossRefGoogle Scholar
  22. [22]
    M Singh, H S Saini, J Thakur, A H Reshak and M K Kashyap J. Solid State Chem. 208 71 (2013)ADSCrossRefGoogle Scholar
  23. [23]
    A H Reshak, Z Charifi and H Baaziz J. Magn. Magn. Mater. 326 210 (2013)ADSCrossRefGoogle Scholar
  24. [24]
    A Yanase and K Siratori J. Phys. Soc. Jpn. 53 312 (1984)ADSCrossRefGoogle Scholar
  25. [25]
    K Schwartz J. Phys. F: Met. Phys. 16 L211 (1986)ADSCrossRefGoogle Scholar
  26. [26]
    J M D Coey and M Venkatesan J. Appl. Phys. 91 8345 (2002)ADSCrossRefGoogle Scholar
  27. [27]
    S M Watts, S Wirth, S V Molnar, A Barry and J M D Coey Phys. Rev. B 61 9621 (2000)ADSCrossRefGoogle Scholar
  28. [28]
    W Pickett and D Singh Phys. Rev. B 53 1146 (1996)ADSCrossRefGoogle Scholar
  29. [29]
    G M Müller, J Walowski, M Djordjevic, G X Miao, A Gupta, A V Ramos, K Gehrke, V Moshnyaga, K Samwer, J Schmalhorst, A Thomas, A Hütten, G Reiss, J S Moodera and M Münzenberg Nat. Mater. 8 56 (2009)ADSCrossRefGoogle Scholar
  30. [30]
    K Yoshii J. Solid State Chem. 159 204 (2001)ADSCrossRefGoogle Scholar
  31. [31]
    T Kurashina, K Hirose, S Ono, N Sata and Y Ohishi Phys. Earth Planet. Inter. 145 67 (2004)ADSCrossRefGoogle Scholar
  32. [32]
    T Komabayashi, K Hirose, N Sata, Y Ohishi and L S Dubrovinsky Earth Planet. Sci. Lett. 260 564 (2007)ADSCrossRefGoogle Scholar
  33. [33]
    J M Porras-Vazquez and P R Slater J. Power Sources 209 180 (2012)CrossRefGoogle Scholar
  34. [34]
    A Zahid, A Iftikhar, I Khan and B Amin Intermetallics 31 287 (2012)CrossRefGoogle Scholar
  35. [35]
    P Poopanya and A Yangthaisong Phys. B: Condens. Matter 419 32 (2013)ADSCrossRefGoogle Scholar
  36. [36]
    D A Landínez Téllez, D P Llamosa, C E Deluque Toro, Arles V Gil Rebaza and J Roa-Rojas J. Mol. Struct. 1034 233 (2013)ADSCrossRefGoogle Scholar
  37. [37]
    A Schäfer, K Rahmanizadeh, G Bihlmayer, M Luysberg, F Wendt, A Besmehn, A Fox, M Schnee, G Niu, T Schroeder, S Mantl, H Hardtdegen, M Mikulics and J Schubert J. Alloys Compd. 651 514 (2015)CrossRefGoogle Scholar
  38. [38]
    R Uecker, H Wilke, D G Schlom, B Velickov, P Reiche, A Polity, M Bernhagen and M Rossberg J. Cryst. Growth 295 84 (2006)ADSCrossRefGoogle Scholar
  39. [39]
    R L Moreira and A Dias J. Phys. Chem. Solids 68 1617 (2007)ADSCrossRefGoogle Scholar
  40. [40]
    G S Rohrer Structure and Bonding in Crystalline Materials (UK: Cambridge University Press) (2001)CrossRefGoogle Scholar
  41. [41]
    L W Martin, Y H Chu and R Ramesh Mater. Sci. Eng. R 68 89 (2010)CrossRefGoogle Scholar
  42. [42]
    W Kohn and L S Sham Phys. Rev. A 1133 140 (1965)Google Scholar
  43. [43]
    K Schwarz and P Blaha Comput. Mater. Sci. 28 259 (2003)CrossRefGoogle Scholar
  44. [44]
    P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J. Luitz WIEN2K, An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Austria: Techn. Universitat Wien) (2001)Google Scholar
  45. [45]
    D J Singh Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic Publishers) (1994)CrossRefGoogle Scholar
  46. [46]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  47. [47]
    C Loschen, J Carrasco, K M Neyman and F Illas Phys. Rev. B 75 35115 (2007)ADSCrossRefGoogle Scholar
  48. [48]
    F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)ADSCrossRefGoogle Scholar
  49. [49]
    D Koller, F Tran and P Blaha Phys. Rev. B 83 195134 (2011)ADSCrossRefGoogle Scholar
  50. [50]
    F D Murnaghan Proc. Natl. Acad. Sci. U.S.A. 30 244 (1944)ADSCrossRefGoogle Scholar
  51. [51]
    L Q Jiang, J K Guo, H B Liu, M Zhu, X Zhou, P Wu and C H Li J. Phys. Chem. Solids 67 1531 (2006)ADSCrossRefGoogle Scholar
  52. [52]
    A S Verma and V K Jindal J. Alloys Compd. 485 514 (2009)CrossRefGoogle Scholar
  53. [53]
    A S Verma and A Kumar J. Alloys Compd. 541 210 (2012)CrossRefGoogle Scholar
  54. [54]
    M Rezaiguia, W Benstaali, A Abbad, S Bentata and B Bouhafs J. Supercond. Nov. Magn 30 2581 (2017)CrossRefGoogle Scholar
  55. [55]
    S Berri, D Maouche, M Ibrir and B Bakri Mater. Sci. Semicond. Process. 26 199 (2014)CrossRefGoogle Scholar
  56. [56]
    K H Hellwge and A M Hellwege Ferroelectrics and Related Substances (Berlin: Springer) vol. 3 (1969)Google Scholar
  57. [57]
    R D King-Smith and D Vanderbilt Phys. Rev. B 49 5828 (1994)ADSCrossRefGoogle Scholar
  58. [58]
    R K Thapa, Sandeep, M P Ghimire and Lalmuanpuia Indian J. Phys. 85. 727 (2011)Google Scholar
  59. [59]
    D J Singh Phys. Rev. B 82 205102 (2010)ADSCrossRefGoogle Scholar
  60. [60]
    S Gong and B G Liu Phys. Lett. A 375 1477 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Laboratory of Technology and Solid’s Properties, Faculty of Sciences and TechnologyAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  2. 2.University of MascaraMascaraAlgeria
  3. 3.Modelling and Simulation in Materials Science LaboratoryDjillali Liabès University of Sidi Bel-AbbèsSidi Bel AbbèsAlgeria

Personalised recommendations