Indian Journal of Physics

, Volume 92, Issue 7, pp 841–846 | Cite as

Impact of ambient environment on the electronic structure of CuPc/Au sample

  • Sumona Sinha
  • M. Mukherjee
Original Paper


The performances of organic devices are crucially connected with their stability in the ambient environment. The impact of 24 h. Ambient environment exposure to the electronic structures of about 12 nm thick CuPc thin film on clean Au substrate have been studied employing UV photoemission spectroscopy technique. X-ray photoemission spectroscopy (XPS) was used to find out the origin of the change of the electronic structures in the sample with the exposure. The XPS study suggests that the oxidation occurs at the CuPc thin film. Due to the adsorption of oxygen in the CuPc film from the ambient air, charge carriers are formed within the CuPc film. Moreover, the XPS results imply that the CuPc film is sufficiently thinner for diffusing oxygen molecules through it and gets physically absorbed on Au substrate during the ambient exposure. Consequently, the hole injection barrier height of pristine CuPc film, grown on Au substrate, is reduced by about 0.50 eV and work-function of the pristine CuPc sample is enhanced by around 0.25 eV in the exposure. The findings will help to understand the mechanism that governs the degradation of performance of CuPc based devices in ambient environment.


CuPc thin film Au substrate Ambient environment exposure Photoemission spectroscopy Valence structure 


82.80.Pv 33.60.+q 81.05.Fb 79.60.Dp 


  1. [1]
    T W Kelley, P F Baude, C Gerlach, D E Ender, D Muyres, M A Haase, D E Vogel and S D Theiss Chem. Mater. 16 4413 (2004)Google Scholar
  2. [2]
    Y Sun, Y Liu, Y Wang, C Di, W Wu and G Yu Appl. Phys. A 95 777 (2009)ADSCrossRefGoogle Scholar
  3. [3]
    S Sinha, C-H Wang, M Mukherjee and Y-W Yang J. Phys. D Appl. Phys. 47 245103 (2014)Google Scholar
  4. [4]
    J Seo, N J Jeon, W S Yang, H-W Shin, T K Ahn, J Lee, J H Noh, S Il Seok Adv. Energy Mater. 5 1501320 (2015)CrossRefGoogle Scholar
  5. [5]
    F Zhanga, X Yanga, M Cheng, W Wanga and L Sun Nano Energy 20 108 (2016)CrossRefGoogle Scholar
  6. [6]
    J-X Tang, M-K Fung, C-S Lee and S-T Lee J. Mater. Chem. 20 2539 (2010)CrossRefGoogle Scholar
  7. [7]
    H Wang, S Mauthoor, S Din, J A Gardener, R Chang, M Warner, G Aeppli, D W McComb, M P Ryan, W Wu, A J Fisher, M Stoneham and S Heutz, ACS Nano 4 (7) 3921 (2010)CrossRefGoogle Scholar
  8. [8]
    X Sun, C Di and Y Liu J. Mater. Chem. 20 2599 (2010)CrossRefGoogle Scholar
  9. [9]
    Y Li, S Chen, Q Liu, L Wang, T Someya and J Ma J. Phys. Chem. C 116 4287 (2012)CrossRefGoogle Scholar
  10. [10]
    Y Guo, C Di, S Ye, X Sun, J Zheng, Y Wen, W Wu, G Yu and Y Liu Adv. Mater. 21 1954 (2009)Google Scholar
  11. [11]
    Y Su, C Wang, W Xie, F Xie, J Chen, N Zhao and J Xu ACS Appl. Mater. Interfaces 3 4662 (2011)CrossRefGoogle Scholar
  12. [12]
    S Sinha, C-H Wang and M Mukherjee Thin Solid Films 93 39 (2017).Google Scholar
  13. [13]
    S Nénon, D Kanehira, N Yoshimoto, F Fages and C Videlot-Ackermann Thin Solid Films 518 5593 (2010)ADSCrossRefGoogle Scholar
  14. [14]
    Y Su, M Ouyang, P Liu, Z Luo, W Xie and J Xu ACS Appl. Mater. Interfaces 5 4960 (2013)CrossRefGoogle Scholar
  15. [15]
    J Park, J E Royer, C N Colesniuc, F I Bohrer, A Sharoni, S Jin, I K Schuller, W C Trogler and A C Kummel J. Appl. Phys. 106 034505 (2009)ADSCrossRefGoogle Scholar
  16. [16]
    S Sinha and M Mukherjee Appl. Surf. Sci. 353 540 (2015)ADSCrossRefGoogle Scholar
  17. [17]
    H Peisert, M Knupfer, T Schwieger, J M Auerhammer, M S Golden and J. Fink J. Appl. Phys. 91 4872 (2002)ADSCrossRefGoogle Scholar
  18. [18]
    T-W Pi, G-R Lee, C-H Wei, W-Y Chen and C-P Cheng J. Appl. Phys. 106 113716 (2009)ADSCrossRefGoogle Scholar
  19. [19]
    A Vollmer, O D Jurchescu, I Arfaoui, I Salzmann, T T M. Palstra, P Rudolf, J Niemax, J Pflaum, J P Rabe and N Koch Eur. Phys. J. E 17 339 (2005)Google Scholar
  20. [20]
    I Irfan, A J Turinske, Z Bao and Y Gao Appl. Phys. Lett. 101 093305 (2012)Google Scholar
  21. [21]
    L Grządziel and M Krzywiecki Mater. Chem. Phys. 149–150 574 (2015)CrossRefGoogle Scholar
  22. [22]
    L Grządziel and M Krzywiecki Thin Solid Films 550 361 (2014)ADSCrossRefGoogle Scholar
  23. [23]
    L Grządziel, M Krzywiecki, H Peisert, T Chassé and J Szuber Thin Solid Films 519 2187 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    M Krzywiecki, L Ottaviano, L Grządziel, P Parisse, S Santucci and J Szuber Thin Solid Films 517 1630 (2009)ADSGoogle Scholar
  25. [25]
    S Sinha, C-H Wang, M Mukherjee, T Mukherjee and Y-W Yang Langmuir 30 15433 (2014)CrossRefGoogle Scholar
  26. [26]
    D A Shirley Phys. Rev. B 5 4709 (1972)ADSCrossRefGoogle Scholar
  27. [27]
    H Ishii, K Sugiyama, E Ito and K Seki Adv. Mater. 11 605 (1999)CrossRefGoogle Scholar
  28. [28]
    S Sinha and M Mukherjee J. Appl. Phys. 114 083709 (2013)ADSCrossRefGoogle Scholar
  29. [29]
    S Sinha and M Mukherjee AIP Adv. 5 107204 (2015)ADSCrossRefGoogle Scholar
  30. [30]
    S Sinha and M Mukherjee Appl. Surf. Sci. 353 540 (2017)ADSCrossRefGoogle Scholar
  31. [31]
    T V Basova, E K Koltsov and I K Igumenov Sens. Actuators B 105 259 (2005)CrossRefGoogle Scholar
  32. [32]
    D Kumaki, T Umeda and S Tokito Appl. Phys. Lett. 92 093309 (2008)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.S. N. Bose National Central for Basic SciencesKolkataIndia

Personalised recommendations