Advertisement

Indian Journal of Physics

, Volume 92, Issue 7, pp 941–945 | Cite as

Non-extensive entropy of modified Gaussian quantum dot under polaron effects

  • H. Bahramiyan
  • R. Khordad
  • H. R. Rastegar Sedehi
Original Paper

Abstract

The effect of electron–phonon (e–p) interaction on the non-extensive Tsallis entropy of a modified Gaussian quantum dot has been investigated. In this work, the LO-phonons, SO-phonons and LO + SO-phonons have been considered. It is found that the entropy increases with enhancing the confinement potential range and depth. The entropy decreases with considering the electron–phonon interaction. The electron–LO + SO-phonon interaction has the largest contribution to the entropy.

Keywords

Entropy Quantum dot Polaron effect 

PACS.

65.40.gd 71.38.-k 68.65.Hb 

References

  1. [1]
    M Tshipa Indian J. Phys. 86 807 (2012)ADSCrossRefGoogle Scholar
  2. [2]
    M Lu, X J Yang S S Perry and J W Rabalais Appl. Phys. Lett. 80 2096 (2002)ADSCrossRefGoogle Scholar
  3. [3]
    P Kalpana K Jayakumar and P Nithiananthi Int. J. Comput. Mater. Sci. Eng. 4 1550018 (2015)Google Scholar
  4. [4]
    V Lozovski and V Piatnytsia J. Comput. Theor. Nanosci. 8 1 (2011)CrossRefGoogle Scholar
  5. [5]
    R Khordad Indian J. Phys. 87 623 (2013)ADSCrossRefGoogle Scholar
  6. [6]
    R Khordad J. Comput. Electron. 13 383 (2014)CrossRefGoogle Scholar
  7. [7]
    H Bahramiyan and R Khordad Opt. Quant. Electron. 46 719 (2014)CrossRefGoogle Scholar
  8. [8]
    J Adamowski A Kwasniowski and B Szafran J. Phys. Condense Matter 17 4489 (2005)ADSCrossRefGoogle Scholar
  9. [9]
    J Adamowski, M Sobkowicz B Szafran and S Bednarek Phys. Rev. B 62 4234 (2000)ADSCrossRefGoogle Scholar
  10. [10]
    W Xie Physica B 403 2828 (2008)ADSCrossRefGoogle Scholar
  11. [11]
    W Xie Phys. Status Solidi B 245 101 (2008)ADSCrossRefGoogle Scholar
  12. [12]
    M Ciurla J Adamowski B Szafran and S Bednarek Physica E 15 261 (2002)ADSCrossRefGoogle Scholar
  13. [13]
    A Gharaati and R Khordad Superlatt. Microstruct. 48 276 (2010)ADSCrossRefGoogle Scholar
  14. [14]
    A A Lucas E Kartheuser and R G Bardro Phys. Rev. B 41 1439 (1990)Google Scholar
  15. [15]
    W P Li et al Physica B 403 3709 (2008)ADSCrossRefGoogle Scholar
  16. [16]
    H J Xie and C Y Chen Eur. Phys. J. B 5 215 (1998)ADSCrossRefGoogle Scholar
  17. [17]
    L Wendler Phys. Stat. Sol. B 129 513 (1985)ADSCrossRefGoogle Scholar
  18. [18]
    W S Li and ChY Chen Physica B 229 375 (1997)ADSCrossRefGoogle Scholar
  19. [19]
    H Bahramiyan and R Khordad Superlatt. Microstrcut. 63 267 (2013)ADSCrossRefGoogle Scholar
  20. [20]
    R Khordad and H Bahramiyan Superlatt. Microstrcut. 76 163 (2014)ADSCrossRefGoogle Scholar
  21. [21]
    R Khordad and H Bahramiyan Opt. Quant. Electron. 47 2727 (2015)CrossRefGoogle Scholar
  22. [22]
    R Khordad and A Ghanbari Opt. Quant. Electron. 49 76 (2017)CrossRefGoogle Scholar
  23. [23]
    C Y Cai C L Zhao and J L Xiao Int. J. Nanosci. 12 1350016 (2013)CrossRefGoogle Scholar
  24. [24]
    Z X Li and J L Xiao J. At. Mol. Sci. 2 74 (2011)Google Scholar
  25. [25]
    R Khordad and H Bahramiyan J. Appl. Phys. 115 124314 (2014)ADSCrossRefGoogle Scholar
  26. [26]
    N Li K X Guo S Shao and G H Liu Opt. Mater. 34 1459 (2012)ADSCrossRefGoogle Scholar
  27. [27]
    B S Kandemir and T Altanhan Phys. Rev. B 60 4834 (1999)ADSCrossRefGoogle Scholar
  28. [28]
    R Q Wang H J Xie and Y B Yu Int. J. Mod. Phys. B 18 2887 (2004)ADSCrossRefGoogle Scholar
  29. [29]
    J F Zhang and J L Xiao Chin. J. Phys. 54 695 (2016)CrossRefGoogle Scholar
  30. [30]
    C M Lee Solid State Commun. 116 51 (2000)ADSCrossRefGoogle Scholar
  31. [31]
    D V Melnikov and W B Fowler Phys. Rev. B 64 245320 (2001)ADSCrossRefGoogle Scholar
  32. [32]
    R Fuchs and K L Kliewer Phys. Rev. 140 A2076 (1965)ADSCrossRefGoogle Scholar
  33. [33]
    J J Licari and R Evrard Phys. Rev. B 15 2254 (1977)ADSCrossRefGoogle Scholar
  34. [34]
    K Huang and B F Zhu Phys. Rev. B 38 13377 (1988)ADSCrossRefGoogle Scholar
  35. [35]
    B K Ridley Phys. Rev. B 39 5282 (1989)ADSCrossRefGoogle Scholar
  36. [36]
    H Rüker E Molinari and P Lugli Phys. Rev. B 44 3463 (1991)ADSCrossRefGoogle Scholar
  37. [37]
    AR Bhatt, KW Kim, MA Stroscio, JM Higman (1993). Phys. Rev. B 48:14671ADSCrossRefGoogle Scholar
  38. [38]
    C Tsallis J. Stat. Phys. 52 479 (1988)ADSCrossRefGoogle Scholar
  39. [39]
    R Khordad Continuum Mech. Thermodyn. 28 947 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R Khordad and H R Rastegar Sedehi Superlatt. Microstrcut. 101 559 (2017)ADSCrossRefGoogle Scholar
  41. [41]
    R Khordad and H R Rastegar Sedehi Indian J. Phys. 91 825 (2017)ADSCrossRefGoogle Scholar
  42. [42]
    M Tiotsop et al Chin. J. Phys. 54 795 (2016)CrossRefGoogle Scholar
  43. [43]
    R Khordad R Bornaei and H A Mardani-Fard Indian J. Phys. 89 545 (2015)ADSCrossRefGoogle Scholar
  44. [44]
    M Tiotsop A J Fotue H B Fostin and L C Fai Physica B 518 61 (2017)ADSCrossRefGoogle Scholar
  45. [45]
    R Khordad Int. J. Thermophys. 34 1148 (2013)ADSCrossRefGoogle Scholar
  46. [46]
    R Khordad M A Sadeghzadeh and A Mohamadian Jahan-Abad Superlatt. Microstrcut. 58 11 (2013)ADSCrossRefGoogle Scholar
  47. [47]
    G Q Hai F M Peeters and J T Devreese Phys. Rev. B 42 11063 (1990)ADSCrossRefGoogle Scholar
  48. [48]
    S Adachi J. Appl. Phys. 58 R1 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • H. Bahramiyan
    • 1
  • R. Khordad
    • 2
  • H. R. Rastegar Sedehi
    • 3
  1. 1.Department of Optics and Laser Engineering, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
  2. 2.Department of Physics, College of SciencesYasouj UniversityYasoujIran
  3. 3.Department of PhysicsJahrom UniversityJahromIran

Personalised recommendations