Skip to main content
Log in

The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns–Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov–Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P K Shukla and A A Mamun Introduction to Dusty Plasma Physics (Bristol: Institute of Physics) (2002)

    Book  Google Scholar 

  2. M Horanyi and D A Mendis Astrophys. J. 294 357 (1985)

    Article  ADS  Google Scholar 

  3. C K Goertz Rev. Geophys. 27 271 (1989)

    Article  ADS  Google Scholar 

  4. V E Fortov, A V Ivlev, S A Khrapak, A G Khrapak and G E Morfill Phys. Rep. 421 1 (2005)

    Article  Google Scholar 

  5. N N Rao, P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  6. A Barkan, R L Merlino and N D’Angelo Phys. Plasmas 2 3563 (1995)

    Article  ADS  Google Scholar 

  7. N D’Angelo J. Phys. D. Appl. Phys. 28 1009 (1995)

  8. T K Aslaksen and O J Havnes Geophys. Res. 97 19175 (1992)

  9. A Brattli, O Havnes and F Melandsø J. Plasma Phys. 58 691 (1997)

  10. P Meuris Planet. Space Sci. 45 1171 (1997)

    Article  ADS  Google Scholar 

  11. W-S Duan and J Parkes Phys. Rev. E 68 67402 (2003)

    Article  ADS  Google Scholar 

  12. W-S Duan, H-J Yang, Y-R Shi and K-P Lü Phys. Lett. A 361 368 (2007)

    Article  ADS  Google Scholar 

  13. G He, W Duan and D Tian Phys. Plasmas 15 43702 (2008)

    Article  Google Scholar 

  14. Y-N Nejoh Phys. Plasmas 4 2813 (1997)

    Article  ADS  Google Scholar 

  15. C Lin, W Feng and M Lin Commun. Nonlinear Sci. Numer. Simul. 13 1287 (2008)

    Article  Google Scholar 

  16. R Amour and M Tribeche Commun. Nonlinear Sci. Numer. Simul. 16 3533 (2011)

    Article  ADS  Google Scholar 

  17. J R Asbridge, S J Bame and I B Strong J. Geophys. Res. 73 5777 (1968)

    Article  ADS  Google Scholar 

  18. W C Feldman et al. J. Geophys. Res. 88 96 (1983)

    Article  ADS  Google Scholar 

  19. Y Futaana, S Machida, Y Saito, A Matsuoka and H Hayakawa J. Geophys. Res. 108A1 1025 (2003)

  20. R Lundin et al. Nature 341 609 (1989)

    Article  ADS  Google Scholar 

  21. S G Dezfuly and D Dorranian Contrib. Plasma Phys. 53 564 (2013)

    Article  ADS  Google Scholar 

  22. D Dorranian and A Sabetkar Phys. Plasmas 19 13702 (2012)

    Article  ADS  Google Scholar 

  23. A Sabetkar and D Dorranian J. Plasma Phys. 80 565 (2014)

    Article  ADS  Google Scholar 

  24. M V Goldman, M M Oppenheim and D L Newman Nonlin. Process. Geophys. 6 221 (1999)

    Article  Google Scholar 

  25. R Bostrom IEEE Trans. Plasma Sci. 20 756 (1992)

  26. R Cairns, R Bingham, R Dendy, C Nairn, P Shukla and A Mamun J. Phys. IV 5 C6-43 (1995)

    Google Scholar 

  27. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  28. J A S Lima, Jr R Silva and J Santos Phys. Rev. E 61 3260 (2000)

    Google Scholar 

  29. A R Plastino and A Plastino Phys. Lett. A 174 384 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. A Lavagno, G Kaniadakis, M Rego-Monteiro, P Quarati and C Tsallis Astrophys. Lett. Commun. 35 449 (1998)

    ADS  Google Scholar 

  31. H R Pakzad Phys. Scr. 83 15505 (2011)

    Article  ADS  Google Scholar 

  32. R Amour, M Tribeche and P K Shukla Astrophys. Space Sci. 338 287 (2012)

    Article  ADS  Google Scholar 

  33. M Benzekka and M Tribeche Astrophys. Space Sci. 338 63 (2012)

    Article  ADS  Google Scholar 

  34. M Benzekka and M Tribeche Phys. Plasmas 20 83702 (2013)

    Article  Google Scholar 

  35. G Wan, W Duan, Q Chen and X Wang Phys. Plasmas 13 82107 (2006)

    Article  Google Scholar 

  36. C Lin and M Lin Commun. Nonlinear Sci. Numer. Simul. 15 852 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. W F El-Taibany and R Sabry Phys. Plasmas 12 82302 (2005)

    Article  Google Scholar 

  38. M Tribeche and G Boumezoued Phys. Plasmas 15 53702 (2008)

    Article  ADS  Google Scholar 

  39. M Bacha and M Tribeche Astrophys. Space Sci. 337 253 (2012)

    Article  ADS  Google Scholar 

  40. E Infeld and G Rowlands Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge university press) (2000)

    Book  MATH  Google Scholar 

  41. H Washimi and T Taniuti Phys. Rev. Lett. 17 996 (1966)

    Article  ADS  Google Scholar 

  42. E E Behery Phys. Rev. E 94 053205 (2016)

    Article  ADS  Google Scholar 

  43. F Verheest and M A Hellberg Phys. Plasmas 16 124703 (2009)

    Article  ADS  Google Scholar 

  44. R E Ergun et al. Geophys. Res. Lett. 25 2061 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Behery.

Appendix: Expressions in the dust charging process

Appendix: Expressions in the dust charging process

Here, we present the used expressions in calculating the dust charging process

$$\begin{aligned} C_{1} & = - \frac{{A_{q\alpha } \left( {15 - 8\alpha_{i} + s\left( {6\alpha_{i} - 15} \right)\psi_{j0} } \right) + 15\sigma \gamma_{1} \left( {4q - 3} \right)\left[ {1 + \left( {q - 1} \right)s\sigma \psi_{j0} } \right]^{{\frac{q}{q - 1}}} }}{{\psi_{j0} \left\{ {3A_{q\alpha } \left( {5 + 8\alpha_{i} } \right) + 45\sigma \gamma_{0} \left( {4q - 3} \right)\left[ {1 + \left( {q - 1} \right)s\sigma \psi_{j0} } \right]^{{\frac{q}{q - 1}}} } \right\}}} \\ C_{2} & = \frac{{s\gamma_{2} - 15s\sigma^{2} \left( {\gamma_{3} + \gamma_{4} + \gamma_{5} } \right)\left( {3q - 2} \right)\left( {4q - 3} \right)\left[ {1 + \left( {q - 1} \right)s\sigma \psi_{j0} } \right]^{{\frac{1}{q - 1}}} }}{{2\psi_{j0} \left\{ {3A_{q\alpha } \left( {5 + 8\alpha_{i} } \right) + 45\sigma \gamma_{0} \left( {4q - 3} \right)\left[ {1 + \left( {q - 1} \right)s\sigma \psi_{j0} } \right]^{{\frac{q}{q - 1}}} } \right\}}} \\ \end{aligned}$$

where

$$\begin{aligned} \gamma_{0} & = 10 + 8\alpha_{e} + q\left\{ {q\left( {8s^{2} \alpha_{e} \sigma^{2} \psi_{j0}^{2} + 30} \right) - 4s\alpha_{e} \sigma \psi_{j0} \left( {s\sigma \psi_{j0} + 2} \right) - 35} \right\} \\ \gamma_{1} & = 30 - 105q + 90q^{2} - 8\alpha e + 8\left( {4 - 5q} \right)s\alpha_{e} \sigma \psi_{j0} + 4q\left( {10q - 7} \right)s^{2} \alpha_{e} \sigma^{2} \psi_{j0}^{2} \\ \gamma_{2} & = A_{q\alpha } \left\{ {15\left( {1 + 2C_{1} \psi_{j0} - s\psi_{j0} } \right) - 32\alpha_{i} \left( {C_{1} \psi_{j0} + 2s\psi_{j0} - 1} \right)} \right\} \\ \gamma_{3} & = 15q\left( {2q - 1} \right) + 32\alpha_{e} + 2\left\{ {C_{1} \left( {15q\left( {2q - 1} \right) - 16\alpha_{e} } \right) + 16\left( {4q - 3} \right)s\alpha_{e} \sigma } \right\}\psi_{j0} \\ \gamma_{4} & = \left\{ {15C_{1}^{2} q\left( {2q - 1} \right) + 32C_{1} s\alpha_{e} \sigma + 4\left( {16 + q\left( {30q - 43} \right)} \right)s^{2} \alpha_{e} \sigma^{2} } \right\}\psi_{j0}^{2} \\ \gamma_{5} & = 8C_{1} q\left( {10q - 7} \right)s^{2} \alpha_{e} \sigma^{2} \psi_{j0}^{3} + 12C_{1}^{2} q\left( {2q - 1} \right)s^{2} \alpha_{e} \sigma^{2} \psi_{j0}^{4} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Taibany, W.F., El-Siragy, N.M., Behery, E.E. et al. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma. Indian J Phys 92, 661–668 (2018). https://doi.org/10.1007/s12648-017-1150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1150-8

Keywords

PACS Nos.

Navigation