Skip to main content
Log in

Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV–visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson–Hall (W–H) method was used to study the X-ray peak profile analysis. The strain–size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20–40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV–visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer’s formula, W–H plots, SSP and the particle size calculated by TEM images are approximately similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R R Prabhu and M A Khadar Bull. Mater. Sci. 31 511 (2008)

    Article  Google Scholar 

  2. R Elilarassi, S Maheshwari and G Chandrasekaran Optoelectron. Adv. Mater. Rapid Commun. 4 309 (2010)

    Google Scholar 

  3. R Rossetti, S Nakahara and L E Brus J. Chem. Phys. 79 1086 (1983)

    Article  ADS  Google Scholar 

  4. A Berman and D Charych Adv. Mater. 11 296 (1999)

    Article  Google Scholar 

  5. C J Barrelet, Y Wu and C M Lieber J. Am. Chem. Soc. 125 11498 (2003)

    Article  Google Scholar 

  6. V L Kolvin, M C Schlamp and A P Alivisatos Nature 370 354 (1994)

    Article  ADS  Google Scholar 

  7. T Vossmeyer et al. J. Phys. Chem. 98 7665 (1994)

    Article  Google Scholar 

  8. A Mews, A Eychmuller and M Giersig J. Phys. Chem. 98 934 (1994)

    Article  Google Scholar 

  9. M Braun, C Burda and M A El-Sayed J. Phys. Chem. A 105 5548 (2001)

    Article  Google Scholar 

  10. R S Mane and C D Lokhande Mater. Chem. Phys. 65 1 (2000)

    Article  Google Scholar 

  11. G Henshaw, I P Oarkin and G Shaw Chem. Commun. 27 1095 (1996)

    Article  Google Scholar 

  12. Y Wada, H Kuramoto and J Anand J. Mater. Chem. 11 1936 (2001)

    Article  Google Scholar 

  13. A I Iorgu et al. Chalcogenide Lett. 10 525 (2013)

    Google Scholar 

  14. A Balandina, W L Wang, N Kouklin and S Bandyopadhyay Appl. Phys. Lett. 76 137 (2000)

    Article  ADS  Google Scholar 

  15. T Zhai, X Fang, L Li, Y Bendo and D Golberg Nanoscale 2 168 (2010)

    Article  ADS  Google Scholar 

  16. B S Rao, B R Kumar, V R Reddy and T S Rao Chelcogenide Lett. 8 177 (2011)

    Google Scholar 

  17. K Kanadawamy, H B Singh and S K Kulshrestha J. Chem. Sci. 121 293 (2009)

    Article  Google Scholar 

  18. R Banerjee, R Jayakrishnan and P Ayyub J. Phys.: Condens. Matter. 12 10647 (2000)

    ADS  Google Scholar 

  19. R Mercy, A S Salvraj, B M Boaz, A Anandhi and R Kanagadurai Indian J. Pure Appl. Phys. 51 442 (2013)

    Google Scholar 

  20. R Seoudi, A Shabaka, WH Eisa, B Anies and N M Faraje Physica B 405 919 (2010)

    Article  ADS  Google Scholar 

  21. B D Cullity and S R Stock Elements of X-ray Diffraction, 3rd edn, PHI New York, ch 3, p 95, ch 5, p 167, ch 14, p 388 (2001)

  22. P M Shafi and A C Bose AIP Adv. 5 0571371 (2015)

    Google Scholar 

  23. U Seetawan et al. Mater. Sci. Appl. 2 1302 (2011)

    Google Scholar 

  24. T Ungar J. Mater. Sci. 42 1584 (2007)

    Article  ADS  Google Scholar 

  25. P. Bindu and S Thomas J Theor. Appl. Phys. 8 123 (2014)

    Google Scholar 

  26. V D Mote, Y Purushotam and B N Dhole J. Theor. Appl. Phys. 6 1 (2012)

    Article  Google Scholar 

  27. D Berlincourt, H Jaffe and L R Shlozawa Phys. Rev. 129 1009 (1963)

    Article  ADS  Google Scholar 

  28. M A Tagliente and M Massaro Phys. Phys. Res. B 266 1055 (2008)

    Google Scholar 

  29. K Venkateswarlu, A C Bose and N Rameshbabu Physica B 405 4256 (2010)

    Article  ADS  Google Scholar 

  30. M A Khadar and B. Thomas Nanostruct. Mater. 5 289(1995)

    Article  Google Scholar 

  31. A K Zak, W H A Majid and M E Abrishami Solid State Sci. 13 251(2011)

    Article  ADS  Google Scholar 

  32. J F Scott and T C Damen Opt. Commun. 5 410 (1972)

    Article  ADS  Google Scholar 

  33. A Phuruangrat J. Ovonic Res. 7 125 (2011)

    Google Scholar 

  34. J Trajic et al. Sci. Sinter. 47 145 (2015)

    Article  Google Scholar 

  35. Q Wu et al. Nanoscale Res. Lett. 11 232 (2016)

    Article  ADS  Google Scholar 

  36. P Kumar, D Kukkar, A Deep, S C Sharma and L M Bharadwaj Adv. Mat. Lett. 3(6) 471(2012)

    Article  Google Scholar 

  37. X Song, W Yao, B Zhang and Y Wu Int. J. Photoenergy 2 0121 (2012)

    Google Scholar 

  38. W Jiang, A Singhal, J Zheng, C Wang and W C W Chan Chem. Mater. 18 4845 (2006)

    Article  Google Scholar 

  39. A Shivashankarappa and K R Sanjay Nanosci. Nanotechnol. Res. 3 6 (2015)

    Google Scholar 

  40. H Zhu et al. J. Hazard. Mater. 169 933 (2009)

    Article  Google Scholar 

  41. V Taghvaei, A Habibi-Yangjeh and M Behboudnia J. Iran. Chem. Soc. 7 S175 (2010)

    Article  Google Scholar 

  42. S Shen, L Guo, X Chen, F Ren and S S Mao Int. J. Hydrog. Energy 35 7110 (2010)

    Article  Google Scholar 

  43. B Girginer, G Galli, E Chiellini and N Bicak Int. J. Hydrog. Energy 34 1176 (2009)

    Article  Google Scholar 

  44. N Kozhevnikova, A Vorokh and A Rempel Russ. J. Gen. Chem. 80 391 (2010)

    Article  Google Scholar 

  45. H Q Chen et al. Spectrochim. Part A 71 1701 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Central Instrumentation Facility of Dr. H S Gour University, Sagar (MP) for TEM/HRTEM, SAED images and school of studies in Physics, Guru Ghasidas University, Bilaspur (CG) for XRD and Raman results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Garg Solanki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, R.G., Rajaram, P. & Bajpai, P.K. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis. Indian J Phys 92, 595–603 (2018). https://doi.org/10.1007/s12648-017-1134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1134-8

Keywords

PACS Nos.

Navigation