Indian Journal of Physics

, Volume 92, Issue 1, pp 37–41 | Cite as

Effect of Rashba type spin–orbit interaction on the electronic spectrum of graphene in the presence of a hydrogenic impurity

  • N. GökçekEmail author
Original Paper


The effect of Rashba spin–orbit interaction on the electronic spectrum of gapped graphene with a hydrogenic impurity in the presence of topological defects is analyzed analytically. Degenerate perturbation theory is used to investigate the dependence of electronic spectrum of gapped graphene on the strengths of impurity and Rashba spin–orbit coupling. The results show that, as the strength of Rashba spin–orbit coupling increases, pseudo-Zeeman splitting of energy levels induced by topological defects is enhanced. Therefore, it is possible to tune this pseudo-Zeeman splitting through the strength of Rashba spin–orbit coupling and of the strength of hydrogenic impurity.


Graphene Rashba spin–orbit interaction Topological defects Geometric phases 


73.22.-f 68.55.Ln 03.65.Ge 



This work is supported by TÜBİTAK under Grant No. 113F103. The author thanks Dr. B. S. Kandemir for valuable comments.


  1. [1]
    K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov Science 306 666 (2004)ADSCrossRefGoogle Scholar
  2. [2]
    A Cortijo and M A H Vozmediano Nucl. Phys. B 763 293 (2007)ADSCrossRefGoogle Scholar
  3. [3]
    D S Novikov Phys. Rev. B 76 245435 (2007)ADSCrossRefGoogle Scholar
  4. [4]
    C Furtado, F Moraes and A M de M Carvalho Phys. Lett. A 372 5368 (2008)ADSCrossRefGoogle Scholar
  5. [5]
    D Huertas-Hernando, F Guinea and A Brataas Phys. Rev. Lett. 103 146801 (2009)ADSCrossRefGoogle Scholar
  6. [6]
    B Chakraborty, K S Gupta and S Sen Phys. Rev. B 83 115412 (2011)ADSCrossRefGoogle Scholar
  7. [7]
    B Chakraborty, K S Gupta and S Sen J. Phys. A: Math. Theor. 46 055303 (2013)ADSCrossRefGoogle Scholar
  8. [8]
    B S Kandemir J. Phys. Soc. Jpn. 82 094706 (2013)ADSCrossRefGoogle Scholar
  9. [9]
    C Bai, J Wang, G Yang and Y Yang Indian J. Phys. 87 133 (2015)ADSCrossRefGoogle Scholar
  10. [10]
    F Delkhosh and A Phirouznia Physica E 66 252 (2015)ADSCrossRefGoogle Scholar
  11. [11]
    A A Shokri and E K Safari Indian J. Phys. 89 23 (2015)ADSCrossRefGoogle Scholar
  12. [12]
    B S Kandemir and D Akay J. Magn. Magn. Mater. 384 101 (2015)ADSCrossRefGoogle Scholar
  13. [13]
    Y S Dedkov, M Fonin, U Rüdiger and C Laubschat Phys. Rev. Lett. 100 107602 (2008)ADSCrossRefGoogle Scholar
  14. [14]
    A Varykhalov, J Sánchez-Barriga, A M Shikin, C Biswas, E Vescovo, A Rybkin, D Marchenko and O Rader Phys. Rev. Lett. 101 157601 (2008)ADSCrossRefGoogle Scholar
  15. [15]
    E I Rashba Phys. Rev. B 79 161409 (2009)ADSCrossRefGoogle Scholar
  16. [16]
    D Marchenko, A Varykhalov, M R Scholz, G Bihlmayer, E I Rashba, A Rybkin, A M Shikin and O Rader Nat. Commun. 3 1232 (2009)CrossRefGoogle Scholar
  17. [17]
    L Lenz, D F Urban and D Bercioux Eur Phy J B 86 502 (2013)ADSCrossRefGoogle Scholar
  18. [18]
    K Shakouri, M R Masir, A Jellal, E B Choubabi and F M Peeters Phys. Rev. B 88 115408 (2013)ADSCrossRefGoogle Scholar
  19. [19]
    N Bolívar, E Medina and B Berche Phys. Rev. B 89 125413 (2014)ADSCrossRefGoogle Scholar
  20. [20]
    K Hasanirokh, M Esmaelpour, H Mohammadpour and A Phirouznia Phys. Lett. A 378 1888 (2014)ADSCrossRefGoogle Scholar
  21. [21]
    M J Bueno, J Lemos de Melo, C Furtado and A M de M Carvalho Eur. Phys. J. Plus 129 201 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesAnkara UniversityAnkaraTurkey

Personalised recommendations