Advertisement

Indian Journal of Physics

, Volume 91, Issue 11, pp 1447–1450 | Cite as

Cosmological parameters in a generalized multi-function gravitation model \(f(T,\theta )\)

  • S. Davood SadatianEmail author
  • A. Tahajjodi
Original Paper

Abstract

The aim of the present article was to study the cosmological model \(f(T,\theta )\). By introducing and examining this model as well as a number of other proposed \(f(T,\theta )\) models, certain cosmological parameters were analyzed in this framework, and their behaviors were investigated. Ultimately, the results were qualitatively compared with the observational data. It was found that by employing proper coefficients, phantom crossing division occured for the equation of state, thus pointing to the existence of a bouncing universe scenario. Furthermore, it was revealed that by creating a potential in the model, inflation could be produced, and the early cosmos could be studied.

Keywords

Quantum gravity Cosmological parameters Inflation 

PACS No.

95.36.+x 98.80.-k 04.50.kd 

References

  1. [1]
    A H Guth Phys. Rev. D 23 347 (1981)ADSCrossRefGoogle Scholar
  2. [2]
    R Ferraro and F Fiorini Phys. Rev. D 75 084031 (2007)ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    P Wu and H W Yu Phys. Lett. B 692 176 (2010)ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    Y F Cai et al Rept. Prog. Phys. 79 106901 (2016)ADSCrossRefGoogle Scholar
  5. [5]
    Y F Cai et al Class. Quantum Gravity 28 215011 (2011)ADSCrossRefGoogle Scholar
  6. [6]
    T Harko et al JCAP 1412 021 (2014)ADSCrossRefGoogle Scholar
  7. [7]
    D N Spergel et al Astrophys. J. Suppl. 170 377 (2007)ADSCrossRefGoogle Scholar
  8. [8]
    E V Linder Phys. Rev. D 81 127301 (2010)ADSCrossRefGoogle Scholar
  9. [9]
    S D Sadatian Int. J. Theor. Phys. 53 675 (2014)CrossRefGoogle Scholar
  10. [10]
    D Liu and M J Rebouas Phys. Rev. D 86 083515 (2012)ADSCrossRefGoogle Scholar
  11. [11]
    B Feng, X Wang and X Zhang Phys. Lett. B 607 35 (2005)ADSCrossRefGoogle Scholar
  12. [12]
    Y F Cai et al Phys. Rept. 493 1 (2010)ADSCrossRefGoogle Scholar
  13. [13]
    J Q Xia et al Int. J. Mod. Phys. D 17 1229 (2008)ADSCrossRefGoogle Scholar
  14. [14]
    E Komatsu and T Futamase Phys. Rev. D 59 064029 (1999)ADSCrossRefGoogle Scholar
  15. [15]
    A R Liddle Phys. Lett. B 340 23 (1994).CrossRefGoogle Scholar
  16. [16]
    S D Sadatian Int. J. Geom. Methods Mod. Phys. 12 1550119 (2015)MathSciNetCrossRefGoogle Scholar
  17. [17]
    S D Sadatian Gen. Relativ. Gravit. 47 149 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic SciencesUniversity of NeyshaburNeyshaburIran

Personalised recommendations