Advertisement

Indian Journal of Physics

, Volume 91, Issue 7, pp 803–818 | Cite as

SUSY dark matter in universal and nonuniversal gaugino mass models

  • D. P. RoyEmail author
Review paper

Abstract

We review the phenomenology of SUSY dark matter in various versions of MSSM, with universal and nonuniversal gaugino masses at the GUT scale. We start with the universal case, where the cosmologically compatible dark matter relic density is achieved only over some narrow regions of parameter space, involving some fine-tuning. Moreover, most of these regions are seriously challenged by the constraints from collider and direct dark matter detection experiments. Then we consider some simple and predictive nonuniversal gaugino mass models, based on SU(5) GUT. Several of these models offer viable SUSY dark matter candidates, which are compatible with the cosmic dark matter relic density and the above mentioned experimental constraints. They can be probed at the present and future collider and dark matter search experiments. Finally, we consider the nonuniversal gaugino mass model arising from anomaly mediated SUSY breaking. In this case the cosmologically compatible dark matter relic density requires dark matter mass of a few TeV, which puts it beyond the scope of collider and direct dark matter detection experiments. However, it has interesting predictions for some indirect dark matter detection experiments.

Keywords

Supersymmetry Dark matter Gaugino Higgsino 

PACS Nos.

12.60.Jv 04.65.+e 95.30.Cq 

Notes

Acknowledgements

I am thankful to Utpal Chattopadhyay for initiating me to the study of nonuniversal gaugino mass models and leading our collaborative works on these models. I also thank him for his help and advice in preparing this manuscript. The works reported here were partially supported by a Senior Scientist Fellowship of the Indian National Science Academy.

References

  1. [1]
    G L Kane (ed.) Perspectives in Supersummetry (World Scientific) (1998)Google Scholar
  2. [2]
    M Drees, R M Godbole and P Roy Theory and Phenomenology of Sparticles (World Scientific) (2004)Google Scholar
  3. [3]
    H Baer and X Tata Weak Scale Supersymmetry (Cambridge: Cambridge University Press) (2006)Google Scholar
  4. [4]
    C Jungman, M Kamionkowski and K Griest Phys. Rep. 267 195 (1996)ADSCrossRefGoogle Scholar
  5. [5]
    K Nakamura et al [Particle Data Group Collaboration] J. Phys. G 37 075021 (2010)Google Scholar
  6. [6]
    N Arkani-Hamed, A Delgada and G F Giudice Nucl. Phys. B 741 108 (2006)ADSCrossRefGoogle Scholar
  7. [7]
    J L Feng, K T Matchev and T Moroi Phys. Rev. D 61 075005 (2000)ADSCrossRefGoogle Scholar
  8. [8]
    J L Feng, K T Matchev and T Moroi Phys. Rev. Lett. 84 2322 (2000)ADSCrossRefGoogle Scholar
  9. [9]
    K Hagiwara et al [Particle Data Group Collaboration] Phys. Rev. D 66 010001 (2002)Google Scholar
  10. [10]
    K L Chan, U Chattopadhyay and P Nath Phys. Rev. D 48 096004 (1998)ADSCrossRefGoogle Scholar
  11. [11]
    D P Roy Acta. Phys. Polon. B 34 3417 (2003); hep-ph/0303106.ADSGoogle Scholar
  12. [12]
    ATLAS Collaboration: G Aad et al Phys. Lett. B 716 1 (2012)Google Scholar
  13. [13]
    CMS Collaboration: S Chatrchyan et al Phys. Lett. B 716 30 (2012)Google Scholar
  14. [14]
    M Chakraborti, U Chattopadhyay, S Rao and D P Roy Phys. Rev. D 91 035022 (2015)ADSCrossRefGoogle Scholar
  15. [15]
    A Djouadi, J L Kneur and G Moultaka Comput. Phys. Commun. 176 426 (2007)ADSCrossRefGoogle Scholar
  16. [16]
    T Hahn, S Heinemeyer, W Hollik, H Rzehak and G Weiglein Comput. Phys. Commun. 180 1426 (2009)ADSCrossRefGoogle Scholar
  17. [17]
    Planck Collaboration: P A R Ade et al Astron. Astrophys. 571 A 16 (2014)Google Scholar
  18. [18]
    WMAP Collaboration: G Hinshaw et al Astrophys. J. Suppl. Ser. 208 19 (2013)Google Scholar
  19. [19]
    LHCb Collaboration: R Aaij et al Phys. Rev. Lett. 111 101805 (2013)Google Scholar
  20. [20]
    CMS Collaboration: S Chatrchyan et al Phys. Rev. Lett. 111 101804 (2013)Google Scholar
  21. [21]
    CMS and LHCb Collaborations, Report No. CMS-PAS-BPH-13-007Google Scholar
  22. [22]
    D Feldman, Z Liu and P Nath Phys. Rev. D 81 117701 (2010)ADSCrossRefGoogle Scholar
  23. [23]
    S Akula, D Feldman, P Nath and G Peim Phys. Rev. D 84 115011 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    H Baer, V Barger and A Mustafayev Phys. Rev. D 85 075010 (2012)ADSCrossRefGoogle Scholar
  25. [25]
    J Ellis and K A Olive Eur. Phys. J. C 72 2005 (2012)ADSCrossRefGoogle Scholar
  26. [26]
    O Buchmueller et al Eur. Phys. J. C 72 2922 (2012)Google Scholar
  27. [27]
    U Chattopadhyay, D Choudhury, M Drees, P Konar and D P Roy Phys. Lett. B 632 114 (2006)ADSCrossRefGoogle Scholar
  28. [28]
    J Ellis, K Enqvist, D V Nanopoulos and K Tamvakis Phys. Lett. B 155 381 (1985)ADSCrossRefGoogle Scholar
  29. [29]
    M Drees Phys. Lett. B 158 409 (1985)ADSCrossRefGoogle Scholar
  30. [30]
    G Anderson, H Baer, C H Chen and X Tata Phys. Rev. D 61 095005 (2000)ADSCrossRefGoogle Scholar
  31. [31]
    K Huitu, Y Kawamura, T Kobayashi and K Puolamaki Phys. Rev. D 61 035001 (2000)ADSCrossRefGoogle Scholar
  32. [32]
    A Corsetti and P Nath Phys. Rev. D 64 125010 (2001)ADSCrossRefGoogle Scholar
  33. [33]
    U Chattopadhyay and P Nath Phys. Rev. D 65 075009 (2002)ADSCrossRefGoogle Scholar
  34. [34]
    U Chattopadhyay and D P Roy Phys. Rev. D 68 033010 (2003)ADSCrossRefGoogle Scholar
  35. [35]
    N Chamoun, C S Huang, C Liu and X H Wu Nucl. Phys. B 624, 81 (2002)ADSCrossRefGoogle Scholar
  36. [36]
    U Chattopadhyay, A Corsetti and P Nath Phys. Rev. D 66, 035003 (2002)ADSCrossRefGoogle Scholar
  37. [37]
    K Huitu, J Laamanen, P N Pandita and S Roy Phys. Rev. D 72, 055013 (2005)ADSCrossRefGoogle Scholar
  38. [38]
    S Bhattacharya, A Datta and B Mukhopadhyaya JHEP 0710, 080 (2007)ADSCrossRefGoogle Scholar
  39. [39]
    K Huitu, R Kinnunen, J Laamanen, S Lehti, S Roy and T Salminen Eur. Phys. J. C 58, 591 (2008)ADSCrossRefGoogle Scholar
  40. [40]
    K Huitu and J Laamanen Phys. Rev. D 79, 085009 (2009)ADSCrossRefGoogle Scholar
  41. [41]
    S Bhattacharya and J Chakrabortty Phys. Rev. D 81, 015007 (2010)ADSCrossRefGoogle Scholar
  42. [42]
    J Chakrabortty, S Mohanty and S Rao JHEP 1402, 074 (2014)ADSCrossRefGoogle Scholar
  43. [43]
    S P Martin Phys. Rev. D 89 035011 (2014)ADSCrossRefGoogle Scholar
  44. [44]
    M S Carena, M Olechowski, S Pokorski and C E M Wagner Nucl. Phys. B 426 269 (1994)ADSCrossRefGoogle Scholar
  45. [45]
    S Komine and M Yamaguchi Phys. Rev. D 63 035005 (2001)ADSCrossRefGoogle Scholar
  46. [46]
    S F King, J P Roberts and D P Roy JHEP 0710 106 (2007)ADSCrossRefGoogle Scholar
  47. [47]
    S Mohanty, S Rao and D P Roy JHEP 1211 175 (2012)ADSCrossRefGoogle Scholar
  48. [48]
    CDMS-II Collaboration: Z Ahmed et al Science 327 1619 (2010)Google Scholar
  49. [49]
    CDMS-II Collaboration: Z Ahmed et al Phys. Rev. Lett. 106 011301 (2011)Google Scholar
  50. [50]
    XENON 100 Collaboration: E Aprile et al Phys. Rev. Lett. 107 131302 (2011)Google Scholar
  51. [51]
    XENON 100 Collaboration: E Aprile et al Phys. Rev. Lett. 109 181301 (2012)Google Scholar
  52. [52]
    P Gondolo, J Edsjo, P Ullio, L Bergstrom, M Schelke and E Baltz JCAP 0407 008 (2004)ADSCrossRefGoogle Scholar
  53. [53]
    PAMELA Collaboration: O Adriani et al Nature 458 607 (2009)Google Scholar
  54. [54]
    Muon (g-2) Collaboration: G W Bennett et al Phys. Rev. D 80 052008 (2009)Google Scholar
  55. [55]
    T Moroi Phys. Rev. D 53 6565 (1996)ADSCrossRefGoogle Scholar
  56. [56]
    S Mohanty, S Rao and D P Roy JHEP 1309 027 (2013)ADSCrossRefGoogle Scholar
  57. [57]
    G Belanger, F Boudjema, P Brun, A Pukhov, S Rosier-Lees, P Salati and A Semenov Comput. Phys. Commun. 182 842 (2011)ADSCrossRefGoogle Scholar
  58. [58]
    G Belanger, F Boudjema, A Pukhov and A Semenov Comput. Phys. Commun. 174 577 (2006)ADSCrossRefGoogle Scholar
  59. [59]
    G Belanger, F Boudjema, A Pukhov and A Semenov Comput. Phys. Commun. 149 103 (2002)ADSCrossRefGoogle Scholar
  60. [60]
    S P Das, M Guchait and D P Roy Phys. Rev. D 90 055011 (2014)ADSCrossRefGoogle Scholar
  61. [61]
    E Ma, D P Roy and S Roy Phys. Lett. B 525 101 (2002)ADSCrossRefGoogle Scholar
  62. [62]
    E Ma and D P Roy Phys. Rev. D 65 075021 (2002)ADSCrossRefGoogle Scholar
  63. [63]
    J Heeck and W Rodejohann Phys. Lett. B 705 369 (2011)ADSCrossRefGoogle Scholar
  64. [64]
    K Harigaya, T Igari, M Nojiri, M Takeuchi and K Tobe JHEP 1403 105 (2014)ADSCrossRefGoogle Scholar
  65. [65]
    M Guchait and D P Roy Phys. Rev. D 52 133 (1995)Google Scholar
  66. [66]
    H K Dreiner, M Guchait and D P Roy Phys. Rev. D 49 3270 (1994)ADSCrossRefGoogle Scholar
  67. [67]
    U Chattopadhyay, A Datta, A Datta, A Datta and D P. Roy Phys. Lett. B 493 127 (2000)ADSCrossRefGoogle Scholar
  68. [68]
    U Chattopadhyay, D Das and D P Roy Phys. Rev. D 79 095013 (2009)ADSCrossRefGoogle Scholar
  69. [69]
    M Guchait, D P Roy and D Sengupta Phys. Rev. D 85 035024 (2012)ADSCrossRefGoogle Scholar
  70. [70]
    D P Roy Phys. Rev. D 81 057701 (2010)ADSCrossRefGoogle Scholar
  71. [71]
    LUX Collaboration: D S Akerib et al Phys. Rev. Lett. 112 091303 (2014)Google Scholar
  72. [72]
    D S Akerib et al., arXiv:1608.07648 [astro-ph.CO]
  73. [73]
    XENON 1T Collaboration: E Aprile et al Proc. Phys. 148 93 (2013)Google Scholar
  74. [74]
    XENON 1T Collaboration: E Aprile et al JCAP 1604 027 (2016)Google Scholar
  75. [75]
    G F Giudice, M A Luty, H Murayama and R Rattazzi JHEP 9812 027 (1998)ADSCrossRefGoogle Scholar
  76. [76]
    T Gherghetta, G F Giudice and J D Wells Nucl. Phys. B 559 27 (1999)ADSCrossRefGoogle Scholar
  77. [77]
    U Chattopadhyay, D Das, P Konar and D P Roy Phys. Rev. D 75 073014 (2007)ADSCrossRefGoogle Scholar
  78. [78]
    J Hisano, S Matsumoto and M Nojiri Phys. Rev. Lett. 92 031303 (2004)ADSCrossRefGoogle Scholar
  79. [79]
    S Profumo Phys. Rev. D 72 103521 (2005)ADSCrossRefGoogle Scholar
  80. [80]
    J Hisano, S Matsumoto, O Saito and M Senami Phys. Rev. D 73 055004 (2006)ADSCrossRefGoogle Scholar
  81. [81]
    M Lattanzi and J Silk Phys. Rev. D 79 083523 (2009)ADSCrossRefGoogle Scholar
  82. [82]
    S Mohanty, S Rao and D P Roy Int. J. Mod. Phys. A 27 1250025 (2012)ADSCrossRefGoogle Scholar
  83. [83]
    J Feng, M Kaplinghat and H B Yu Phys. Rev. D 82 083525 (2010)ADSCrossRefGoogle Scholar
  84. [84]
    A Birkedal-Hansen, B D Nelson Phys. Rev. D 67, 095006 (2003)ADSCrossRefGoogle Scholar
  85. [85]
    D G Cerdeno and C Munoz JHEP 0410, 015 (2004)ADSCrossRefGoogle Scholar
  86. [86]
    G Belanger, F Boudjema, A Cottrant, A Pukhov and A Semenov Nucl. Phys. B 706, 411 (2005)ADSCrossRefGoogle Scholar
  87. [87]
    H Abe, T Kobayashi and Y Omura Phys. Rev. D 76, 015002 (2007)ADSCrossRefGoogle Scholar
  88. [88]
    P Nath and A B Spisak Phys. Rev. D 93 095023 (2016)ADSCrossRefGoogle Scholar
  89. [89]
    J Kawamura and Y Omura Phys. Rev. D 93 055019 (2016)ADSCrossRefGoogle Scholar
  90. [90]
    K Harigaya, T T Yanagida and N Yokozaki Phys. Rev. D 92 035011 (2015)ADSCrossRefGoogle Scholar
  91. [91]
    M A Ajaib, I Gogoladze and Q Shafi Phys. Rev. D 91 095005 (2015)ADSCrossRefGoogle Scholar
  92. [92]
    J Chakrabortty, A Choudhury and S Mondal JHEP 1507 038 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  1. 1.Homi Bhabha Centre for Science EducationTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations