Skip to main content
Log in

Characterization by optical and magnetic spectroscopy of a synthesized SiO2 thin film used for radiation detector

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This work reports the synthesis and characterization of silica glass prepared by sol–gel procedure and finds out the effects of doses of gamma irradiation on the steps route of the heat-treated sample at 600 and 1100 °C. Combined characterizations of the glassy samples have been carried out by optical absorption and electron paramagnetic resonance. Also, FT infrared absorption spectra have been measured for both the heat-treated samples before and after gamma irradiation. Optical absorption spectra have identified an absorption band at 212–215 nm beside a broad band at 230–265 nm and the correlation of E′ center with heat-treatment and gamma irradiation have been followed. FT infrared absorption spectra indicate the bands within near IR region representing the vibrational modes due to water, OH and SiOH within the wavenumber range 2500–3700 cm−1 are affected by heat treatment due to the elimination of organic residue and amount of OH and water. ESR investigations confirm the results obtained from optical and FTIR measurements. It is concluded from the collective data that sol–gel silica glass can serve as acceptable candidate for gamma-rays irradiator and gamma chamber dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K Kadono, N Itokura, T Akai, M Yamashita and T Yazawa Nucl. Instrum. Meth. B. 267 2411 (2009)

    Article  ADS  Google Scholar 

  2. F M Ezz-Eldin, F Abdel-Rehim, A A Abdel-Azim and A A Ahmed Med. Phys. 21(7) 1085 (1994)

    Article  Google Scholar 

  3. W A Hedden, J F Kircher and B W King J. Am. Ceram. Soc. 43(8) 413 (1960)

    Article  Google Scholar 

  4. W L McLaughlin Dosimetry for Radiation Processing (London: Taylor & Francis Inc.) (1989)

    Google Scholar 

  5. A M Abdelghany, F H ElBatal, H A ElBatal and F M EzzEldin J. Mol. Struct. 1074 503 (2014)

    Article  ADS  Google Scholar 

  6. H H Mahmud, A Mansour and F M Ezz-Eldin J. Radioanal. Nucl. Ch.302 (1) 261 (2014)

    Article  Google Scholar 

  7. C J Brinker and G W Scherer Sol Gel Science: The Physics and Chemistry of Sol-Gel Processing (San Diego, CA: Academic Press) (1990)

    Google Scholar 

  8. H H Mahmoud, I K Batisha and F M Ezz-Eldin Spectrochim. Acta A 150 72 (2015)

    Article  Google Scholar 

  9. L C Klein SolGel Technology for Thin Films, Fibers, Preforms, Electronics and Speciality Shapes (NewJersey: Noyes) (1988)

    Google Scholar 

  10. D Loveridge and S Parke Phys. Chem. Glasses 12 19 (1971)

    Google Scholar 

  11. C Russel, Glastech. Ber. 66(4) 68 (1993)

    Google Scholar 

  12. E I Kamitsos, A P Patsis, M A Karakassides and G D Chryssikos J. Non-Cryst. Solids 126 52 (1990)

    Google Scholar 

  13. E J Friebele in: D R Uhlmann and N J Kreidl, (Eds.), Optical Properties of Glasses (Westerville, OH: The American Ceramic Society, Inc.) p. 205 (1991)

    Google Scholar 

  14. A M Abdelghany, H A ElBatal and F M Ezz-Eldin Spectrochim. Acta A 149 788 (2015)

    Article  Google Scholar 

  15. W Liu, D Chen, H Miyoshi, K Kadono and T Akai J. Non-Cryst. Solids 352 2969 (2006)

    Article  ADS  Google Scholar 

  16. N Dogan and A B Tugrul Sol. Energy Mat. Sol. C 69(3) 241 (2001)

    Article  Google Scholar 

  17. D V Orlinski and K Yu Vukolov Plasma Devices Oper. 7(3) 195 (1999)

    Article  Google Scholar 

  18. A K Sandhu, S Singh and O P Pandey Mater. Chem. Phys. 115(2) 783 (2009)

    Article  Google Scholar 

  19. R Kaur, S Singh, K Singh and O P Pandey Rad. Phys. Chem. 86 23 (2013)

    Article  ADS  Google Scholar 

  20. H A El-Batal and F M Ezz-Eldin J. Am. Ceram. Soc. 76(2) 523 (1993)

    Article  Google Scholar 

  21. F M Ezz-Eldin, N A Elalaily, H H Mahmoud and T D Abd-Elaziz Phys. B 403(5) 576 (2008)

    Article  ADS  Google Scholar 

  22. A L Stesmans in: G Pacchioni, L Skuja and D L Griscom, (Eds.), Defects in SiO 2 and Related Dieletrics: Science and Technology, Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  23. D L Griscom Phys. Rev. B 64 174201-1 (2001)

    Article  ADS  Google Scholar 

  24. P G Fuochi, U Corda, M Lavalle, A Kovacs, M Baranyai, A Mejri and K Farah Nukleonika 54(1) 39 (2009)

    Google Scholar 

  25. V A Mashkov, W R Austin, L Zhang and R G Leisure Phys. Rev. Lett. 76 2926 (1996)

    Article  ADS  Google Scholar 

  26. W Vogel Glass Chemistry, 2nd edn. (Berlin: Springer) (1994)

    Book  Google Scholar 

  27. M I Teixeira and L V E Caldas Appl. Radiat. Isotopes 57(3) 407 (2002)

    Article  Google Scholar 

  28. R J Goldstein et al. Int. J. Heat Mass Trans. 46(11) 1887 (2003)

    Article  Google Scholar 

  29. S Y Marzouk and F M Ezz-Eldin Phys. B 403(18) 3307 (2008)

    Article  ADS  Google Scholar 

  30. A O Volcheck, V M lisitsyn, A I Gusarov, V Y Yakovlev and V I Arbuzov Nucl. Instrum. Meth. B 211(1) 100 (2003)

    Article  ADS  Google Scholar 

  31. G Sharma, K Singh, H Singh, Manupriya, S Mohan and S B Narang Radiat. Phys. Chem. 75(9) 959 (2006)

    Article  ADS  Google Scholar 

  32. S Y Marzouk, N A Elalaily, F M Ezz-Eldin and W M Abd-Allah, Phys. B 382 340(2006)

    Article  ADS  Google Scholar 

  33. S Corrêa et al. J. Nanomater. 2016 1 (2016)

    Article  Google Scholar 

  34. A M Efimov J. Non-Cryst. Solids 253 95 (1999)

    Google Scholar 

  35. Y I Ryskin and G P Stavitskaya Opt. Spektrosk 8 606 (1960) (in Russian)

    Google Scholar 

  36. Ya I Ryskin Izv. AN USSR Neorgan. Mater. 7 375 (1971) (in Russian)

    Google Scholar 

  37. M V J Rocha, H W P Carvalho, L C T Lacerda, G Simões, G B de Souza and T C Ramalho Spectrochim. Acta A Mol. Biomol. Spectrosc. 117 276 (2014)

    Article  ADS  Google Scholar 

  38. H Scholze Glass Ind. 43 622 (1966)

    Google Scholar 

  39. H Scholze, Glass: Nature, Structure, and Properties (NewYork: Springer) (1991)

    Book  Google Scholar 

  40. H Scholze Glastech. Ber. 32 142 (1959)

    Google Scholar 

  41. Y Morimoto, S Nozawa and H Hosono, Phys. Rev. B 59 4066 (1999)

    Article  ADS  Google Scholar 

  42. K M Davis and M Tomozawa J. Non-Cryst. Solids 201(3) 177 (1996)

    Google Scholar 

  43. G E Walrafen and S R Samanta J. Chem. Phys. 69 493 (1978)

    Article  ADS  Google Scholar 

  44. T Yoshida, T Tanabe, M Hirano and S Muto Nucl. Instrum. Methods B 218 202 (2004)

    Article  ADS  Google Scholar 

  45. A Patra, D Kundu and D Ganguly Mater. Lett. 32(1) 43 (1997)

    Article  Google Scholar 

  46. A Patra, D Kundu and D Ganguly J. Sol-Gel Sci. Technol. 9(1) 65 (1997)

    Google Scholar 

  47. T E Tsai and D L Griscom Phys. Rev. Lett. 67 2517 (1991)

    Article  ADS  Google Scholar 

  48. K Arai, H Imai, H Hosono, Y Abe and H Imagawa Appl. Phys. Lett. 53 1891 (1988)

    Article  ADS  Google Scholar 

  49. D L Griscom J. Non-Cryst. Solids 349 139 (2004)

    Google Scholar 

  50. F Messina, F Comandè and M Cannas J. Non-Cryst. Solids 357 1985 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, T.D., Ezz-Eldin, F.M. Characterization by optical and magnetic spectroscopy of a synthesized SiO2 thin film used for radiation detector. Indian J Phys 91, 1049–1059 (2017). https://doi.org/10.1007/s12648-017-0998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-0998-y

Keywords

PACS Nos.

Navigation