Indian Journal of Physics

, Volume 91, Issue 8, pp 895–902 | Cite as

Effect of a strain on the magnetotransport properties of Bi wires

  • E. CondreaEmail author
  • A. Gilewski
  • F. Muntyanu
Original Paper


Measurements of the longitudinal resistance and Seebeck coefficient of Bi wires in a high magnetic field have revealed some anomalies in a magnetic field far above the quantum limit of the electrons; the most prominent feature is a sharp peak of magnetoresistance at 33 T. The observed correlation between a simultaneous shift of the position of the anomaly and the quantum limit of light electrons in a magnetic field during modification of the electronic structure under strain suggests that the unidentified peak can be attributed to the complex structure of the lowest Landau level of light electrons occurring in high magnetic fields.


Bismuth Uniaxial strain Seebeck effect Magnetoresistance High magnetic field 


71.70.Di 71.18.+y 72.15.Gd 73.43.-f 



This work is supported by a Polish-Moldovan bilateral project (PAN-2016-2018). One of the authors (EC) acknowledges support by EuroMagNET under the EU contract for access to the High Field Magnet Laboratory and Institute for Molecules and Materials, Radboud University in Nijmegen.


  1. [1]
    N Miura, K Hiruma, G Kido and S Chikazumi Phys. Rev. Lett. 49 1339 (1982)ADSCrossRefGoogle Scholar
  2. [2]
    N B Brandt, E A Svistova and G Kh Tabieva Zh. Experim.i Teor. Fiz. Lett. 4 27 (1966)Google Scholar
  3. [3]
    Z Zhu, A Collaudin, B Fauqué, W Kang and K Behnia Nat. Phys. 8 89 (2012)CrossRefGoogle Scholar
  4. [4]
    K Behnia, L Balicas and Y Kopelevich Science 317 1729 (2007)ADSCrossRefGoogle Scholar
  5. [5]
    H Yang, B Fauque, L Malone, A B Antunes, Z Zhu, C Uher and K Behnia, Nat. Commun. 1 47 (2010)ADSCrossRefGoogle Scholar
  6. [6]
    Z Zhu, B Fauque, L Malone, A B Antunes, Y Fuseya, K Behnia Proc. Natl. Acad. Sci. USA 102 14813 (2012)ADSCrossRefGoogle Scholar
  7. [7]
    R Kuechler, L Steinke, R Daou, M Brando, K Behnia and F Steglich Nat. Mater. 13 461 (2014)ADSCrossRefGoogle Scholar
  8. [8]
    B Fauque, B Vignolle, C Proust, J-P Issi and K Behnia New J. Phys. 11 113012 (2009)ADSCrossRefGoogle Scholar
  9. [9]
    D A Abanin, S A Parameswaran, S A Kivelson and S L Sondhi Phys. Rev. B 82 035428 (2010)ADSCrossRefGoogle Scholar
  10. [10]
    A Collaudin, B Fauqué, Y Fuseya, W Kang and B Kamran Phys. Rev. X 5 021022 (2015)Google Scholar
  11. [11]
    G P Mikitik and Y V Sharlai Phys. Rev. B 91 075111 (2015)ADSCrossRefGoogle Scholar
  12. [12]
    A Banerjee et al. Phys. Rev. B 78 161103 (2008)ADSCrossRefGoogle Scholar
  13. [13]
    Y V Sharlai and G P Mikitik Phys. Rev. B 79 081102(R) (2009)ADSCrossRefGoogle Scholar
  14. [14]
    G E Smith, G A Baraff and J W Rowell Phys. Rev. 135 A1118 (1964)ADSCrossRefGoogle Scholar
  15. [15]
    B Seradjeh, J Wu and P Phillips Phys. Rev. Lett. 103 136803 (2009)ADSCrossRefGoogle Scholar
  16. [16]
    K Behnia Phys. Rev. Lett. 104 059705 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    C Li, A Kasumov, A Murani, S Sengupta, F Fortuna, K Napolskii et al. Phys. Rev. B 90 245427 (2014)ADSCrossRefGoogle Scholar
  18. [18]
    E Condrea, A Gilewski and A Nicorici J. Phys. Condens. Matter 25 205303 (2013)ADSCrossRefGoogle Scholar
  19. [19]
    K Hiruma, G Kido and N Miura Solid State Commun. 31 1019 (1979)ADSCrossRefGoogle Scholar
  20. [20]
    M P Vecchi, J R Pereira and M S Dresselhaus Proc. Int. Conf. Phys. Semicond. (Stuttgart, 1974) (Edited B. G. Teubner, Stutgart, 1974) p. 1181 (1974)Google Scholar
  21. [21]
    M P Vecchi, J R Pereira and M S Dresselhaus Phys. Rev. B 14 298 (1976)ADSCrossRefGoogle Scholar
  22. [22]
    J Alicea and L Balents Phys. Rev. B 79 241101 (2009)ADSCrossRefGoogle Scholar
  23. [23]
    Y V Sharlai and G P Mikitik Phys. Rev. B 83 085103 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    D Balla and N B Brandt Sov. Phys. JETP 20 1111 (1965)Google Scholar
  25. [25]
    I M Lifshitz Sov. Phys. JETP 11 1130 (1960)Google Scholar
  26. [26]
    N B Brandt, V A Kul’bachinskii, N Y Minina and V D Shirokikh Sov. Phys. JETP 51 562 (1980)ADSGoogle Scholar
  27. [27]
    Y P Gaidukov Sov. Phys.-Usp. 27 256 (1984)Google Scholar
  28. [28]
    E Condrea and A Nicorici Solid State Commun. 150 118 (2010)ADSCrossRefGoogle Scholar
  29. [29]
    E Condrea, A Nicorici, A Gilewski and S Matyjasik J. Low Temp. Phys. 174 232 (2014)ADSCrossRefGoogle Scholar
  30. [30]
    M Hagiwara and A Inoue, Production Techniques of Alloy Wires by Rapid Solidification in Rapidly Solidified Alloys, ed H H Liebermann (New York: Dekker) p. 141 (1993)Google Scholar
  31. [31]
    A D Grozav and E Condrea J. Phys. Condens. Matter 16 6507 (2004)ADSCrossRefGoogle Scholar
  32. [32]
    N B Brandt, D V Gitsu, V A Dolma and Y A Ponomarev Sov. Phys. JETP 65 515 (1987)Google Scholar
  33. [33]
    R G Chambers Proc. R. Soc. Lon. Ser. A 202 378 (1950)ADSCrossRefGoogle Scholar
  34. [34]
    V S Edelman Adv. Phys. 25 555 (1976)ADSCrossRefGoogle Scholar
  35. [35]
    K Hiruma and N Miura J Phys Soc Jpn 52 2118 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  1. 1.International Laboratory of High Magnetic Fields and Low TemperaturesWrocławPoland
  2. 2.Institute of Electronic Engineering and NanotechnologiesAcademy of Science of MoldovaChişinăuRepublic of Moldova
  3. 3.MagNetWrocławPoland

Personalised recommendations