Indian Journal of Physics

, Volume 91, Issue 4, pp 413–420 | Cite as

The electrical properties of photodiodes based on nanostructure gallium doped cadmium oxide/p-type silicon junctions

Original Paper
  • 170 Downloads

Abstract

Gallium doped cadmium-oxide (CdO: Ga) thin films were successfully deposited by sol–gel spin coating method on p-type Si substrate. The electrical properties of the photodiode based on nanostructure Ga doped n-CdO/p-Si junctions were investigated. The current–voltage (IV) characteristics of the structure were investigated under various light intensity and dark. It was observed that generated photocurrent of the Au/n-CdO/p-Si junctions depended on light intensity. The capacitance–voltage and conductance–voltage measurements were carried out for this diode in the frequency range between 100 and 1000 kHz at room temperature by steps of 100 kHz. The capacitance decreased with increasing frequency due to a continuous distribution of the interface states. These results suggested that the Au/n-CdO/p-Si Schottky junctions could be utilized as a photosensor. Furthermore, the voltage and frequency dependence of series resistance were calculated from the CV and G/ω–V measurements and plotted as functions of voltage and frequency. The distribution profile of R S V gave a peak in the depletion region at low frequencies and disappeared with increasing frequencies.

Keywords

Schottky barriers Heterojunction Electrical properties Interface states Photoconduction 

PACS Nos.

73.30.+y 73.40.Kp 73.61.−r 73.40.−c 72.40.+w 

References

  1. [1]
    E H Rhoderickand and R H Williams Metal Semiconductor Contacts (Clarendon: Oxford) p 1 (1988)Google Scholar
  2. [2]
    R T Tung Mater. Sci. Eng. R 351 (2001)Google Scholar
  3. [3]
    M Sze Physics of Semiconductor Devices (Willey: New York) p 1 (1981)Google Scholar
  4. [4]
    E Marıl, A Kaya, H G Çetinkaya, S Koçyiğit and Ş Altındal Mat. Sci. Sem. Proc. 39 332 (2015)CrossRefGoogle Scholar
  5. [5]
    Ş Karataş, Ş Altındal, A Türütand and A Özmen Appl. Surf. Sci. 217 250 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    A Turut, A Karabulut, K Ejderha and N Bıyıklı Mater. Res. Expr. 2 046301 (2015)CrossRefGoogle Scholar
  7. [7]
    Ş Karataş, F Yakuphanoğlu and F M Amanullah J. Phys. Chem. Sol. 73 46 (2012)ADSCrossRefGoogle Scholar
  8. [8]
    K Kawamura, K Maekawa, H Yanagi, M Hirano and H Hosono Thin Solid Films 4451 82 (2003)Google Scholar
  9. [9]
    P H Jefferson, S A Hatfield, T D Veal, P D C King and C. F. Mc Conville Appl. Phys. Lett. 92 022101 (2008)ADSCrossRefGoogle Scholar
  10. [10]
    A Varkey Thin Solid Films 239 211 (1994)ADSCrossRefGoogle Scholar
  11. [11]
    T L Chuand and S ShirleyChu J. Electron. Mater. 19 (9) 1003 (1990)ADSCrossRefGoogle Scholar
  12. [12]
    R Hauland and D Just J. Appl. Phys. 33 487 (1962)ADSCrossRefGoogle Scholar
  13. [13]
    A A Dakhel Sol. Energy 84 1433 (2010)ADSCrossRefGoogle Scholar
  14. [14]
    Z Zhao, D L Morel and C S Ferekides Thin Solid Films 413 203 (2002)ADSCrossRefGoogle Scholar
  15. [15]
    R S Mane, H M Pathan, C D Lokhande and S H Han Sol. Energy 80 185 (2006)Google Scholar
  16. [16]
    Y Hame and S E Sam Sol. Energy 77 291 (2004)ADSCrossRefGoogle Scholar
  17. [17]
    Ş Karataş and A Türüt Microelectron. Reliab. 50 351 (2010)CrossRefGoogle Scholar
  18. [18]
    R R Salunkhe and C D Lokhande Sens. Actuators B 129 345 (2008)CrossRefGoogle Scholar
  19. [19]
    R S Mane and S H Han Electrochem. Commun. 7 205(2005)CrossRefGoogle Scholar
  20. [20]
    K Gurumurugan, D Mangalaraj, S K Narayandass, K Sekar and C P G Vallabhan Semicond. Sci. Technol. 9 1827 (1994)ADSGoogle Scholar
  21. [21]
    P K Ghosh, S Das, S Kundoo and K K Chattopadhyay J. Sol Gel Sci. Technol. 34 173 (2005)CrossRefGoogle Scholar
  22. [22]
    T K Subramanyam, B SrinivasuluNaidu and S Uthanna Appl. Surf. Sci. 169 529 (2001)ADSCrossRefGoogle Scholar
  23. [23]
    N Ueda, H Meada, H Hosono and H Kawazoe J. Appl. Phys. 84 6174 (1998)ADSCrossRefGoogle Scholar
  24. [24]
    A J Varkey and A F Fort Thin Solid Films 239 (2) 211 (1994)ADSCrossRefGoogle Scholar
  25. [25]
    F Yakuphanoğlu Appl. Surf. Sci. 257 1413 (2010)ADSCrossRefGoogle Scholar
  26. [26]
    J S Cruz et al. Thin Solid Films 493 83(2005)CrossRefGoogle Scholar
  27. [27]
    M Yan, M Lane, C R Kannewurf and R P H Changa Appl. Phys. Lett. 78 2342 (2001)Google Scholar
  28. [28]
    L R Gutierrez, J J C Romero, J M P Tapia, E B Calva, J C M Flores, and M O Lopez Mater. Lett. 60 3866 (2006)CrossRefGoogle Scholar
  29. [29]
    MA Yıldırım and A Ateş Sens. Acta. A 155 272 (2009)Google Scholar
  30. [30]
    S Aksoy, Y Caglar, S Ilican and M Caglar Int. J. Hydr. Energy 34 5191 (2009)CrossRefGoogle Scholar
  31. [31]
    A A Dakhel Sol. Energy 83 934 (2009)Google Scholar
  32. [32]
    I Akyuz, S Kose, E Ketenci, V Bilgin and F Ataya J. Allays Comp. 509 1947 (2011)CrossRefGoogle Scholar
  33. [33]
    X Wu, TJ Couttsand and WP Mulligan J. Vac. Sci. Technol. A 15 1057(1997)ADSCrossRefGoogle Scholar
  34. [34]
    R K Gupta et al. Physica E 56 288 (2014)ADSCrossRefGoogle Scholar
  35. [35]
    V R Shinde, T P Gujar, C D Lokhande, R S Mane and S H Han Mater. Chem. Phys. 96 326 (2006)Google Scholar
  36. [36]
    J S Cruz, G T Delgado, R C Perez, C I Z Romero and O Z Angel Thin Solid Films 515 5381 (2007)CrossRefGoogle Scholar
  37. [37]
    N S Das, B Saha, R Thapa, G C Das and K K Chattopadhyay Physica E 42 1377 (2010)Google Scholar
  38. [38]
    F Yakuphanoğlu, Y Çağlar, M Çağlar and S Ilican Mater. Sci. Semicond. Proc. 13 137 (2010)CrossRefGoogle Scholar
  39. [39]
    R K Gupta, M Çavaş, A A Al-Ghamdi, Z H Gafer, F El-Tantawy and F Yakuphanoğlu Sol. Energy 92 1 (2013)ADSCrossRefGoogle Scholar
  40. [40]
    S Kazim, V Alia, M Zulfequar, M MazharulHaq and M Husain Physica B 393 310 (2007)CrossRefGoogle Scholar
  41. [41]
    R Singhand and A K Narula Appl. Phys. Lett. 71 2845 (1997)ADSCrossRefGoogle Scholar
  42. [42]
    M Soylu, A A Al-Ghamdi, S B Omran and F Yakuphanoğlu J. Alloys Comps. 617 602 (2014)CrossRefGoogle Scholar
  43. [43]
    F Yakuphanoğlu and W A Farooq Mater. Sci. Semicond. Process. 14 207 (2011)CrossRefGoogle Scholar
  44. [44]
    F Yakuphanoglu Sol. Energy Mater. Sol. Cells 91 1182 (2007)CrossRefGoogle Scholar
  45. [45]
    D T Phan, R K Gupta, G S Chung, A A Al-Ghamdi, O A Al-Hartomy, F El-Tantawy and F Yakuphanoğlu Sol. Energy 86 2961 (2012)ADSCrossRefGoogle Scholar
  46. [46]
    M Soylu, M Çavaş, A A Al-Ghamdi, Z H Gafer, F. El-Tantawy and F Yakuphanoğlu Sol. Energy Mater. Sol. Cells 124 180 (2014)CrossRefGoogle Scholar
  47. [47]
    Ş Karataş and Z Kara Microelect. Reliab. 51 2205 (2011)CrossRefGoogle Scholar
  48. [48]
    P Chattopadhyay and B Raychaudhuri Solid State Electron. 35 605 (1993)ADSCrossRefGoogle Scholar
  49. [49]
    A Tataroğlu Microelect. Eng. 83 2551 (2006)Google Scholar
  50. 50]
    Ş Karataş and A Turut Vacuum 74 45 (2004)Google Scholar
  51. [51]
    WA Hilland and C C Coleman Solid State Electron. 23 987 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  1. 1.Department of Mechatronics Engineering, Faculty of TechnologyFirat UniversityElazigTurkey
  2. 2.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey
  3. 3.Department of Physics, Faculty of Science and ArtsKahramanmaras Sütcü Imam UniversityKahramanmaraşTurkey

Personalised recommendations