Indian Journal of Physics

, Volume 91, Issue 4, pp 421–430 | Cite as

Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures

  • S. Altındal Yerişkin
  • M. Balbaşı
  • S. Demirezen
Original Paper


In this study, Au/0.07 graphene-doped PVA/n-Si structures were fabricated and current conduction mechanism in these structures were investigated in the temperature range of 80–380 K through forward bias current–voltage (IV) measurements. Main electrical parameters were extracted from I–V data. Zero-bias barrier height (\(\overline{\varPhi }_{B0}\)) and ideality factor (n) were found strong functions of temperature and their values ranged from 0.234 eV and 4.98 (at 80 K) to 0.882 eV and 1.15 (at 380 K), respectively. Φ ap versus q/2kT plot was drawn to obtain an evidence of a Gaussian distribution of the barrier heights (BHs) and it revealed two distinct linear regions with different slopes and intercepts. The mean values of BH (Φ Bo) and zero-bias standard deviation (σ s ) were obtained from the intercept and slope of the linear regions of this plot as 1.30 eV and 0.16 V for the first region (280–380 K) and 0.74 eV and 0.085 V for the second region (80–240 K), respectively. Thus, the values of \(\overline{\varPhi }_{B0}\) and effective Richardson constant (A*) were also found from the intercept and slope of the modified Richardson plot [ln(I s /T 2) − q 2 σ o 2 /2k 2 T 2 vs q/kT] as 1.31 eV and 130 A/cm2 K2 for the first region and 0.76 eV and 922 A/cm2 K2 for the second region, respectively. The value of A* for the first region was very close to the theoretical value for n-Si (112 A/cm2 K2). The energy density distribution profile of surface states (Nss) was also extracted from the forward bias I–V data by taking into account voltage dependent effective BH (Φe) and n.


Polymers Electrical characteristics Surface properties Current-transport mechanisms 


73.20.-r 73.40.-c 73.30.+y 



This study was supported by Gazi University Scientific Research Project (Project number: GU-BAP.06/2016-13).


  1. [1]
    G D Sharma, S K Gupta and M S Roy Thin Solid Films 333 176 (1998)ADSCrossRefGoogle Scholar
  2. [2]
    A Tombak, Y S Ocak, S Asubay, T Kılıcoğlu, F Özkahraman Mater. Sci. Semicond Proces. 24 187 (2014)CrossRefGoogle Scholar
  3. [3]
    Ş Karataş and F Yakuphanoğlu Mater. Chem. Phys. 138 72 (2013)CrossRefGoogle Scholar
  4. [4]
    H Uslu, Ş Altındal and İ Dökme J. Appl. Phys. 108 104501 (2008)CrossRefGoogle Scholar
  5. [5]
    Ş Altındal, T Tunç, H Tecimer and İ Yucedağ Mater. Sci. Semicond. Proces. 28 48 (2014)CrossRefGoogle Scholar
  6. [6]
    I M Afandiyeva, S Demirezen and Ş Altındal J. Alloys Compd 552 423 (2013)CrossRefGoogle Scholar
  7. [7]
    M Soylu, M Cavaş, A A Al-Ghamdi, Z H Gafer, F El-Tantawy and F Yakuphanoğlu Solar Energy Mater. Solar cell. 124 180 (2014)CrossRefGoogle Scholar
  8. [8]
    H G Çetinkaya, S Alialy and Ş Altındal J. Mater. Sci: Mater Electron 26 3186 (2015)Google Scholar
  9. [9]
    H Uslu, İ Dökme, I M Afandiyeva and Ş Altındal Surf. Interface Anal. 42 807 (2010)CrossRefGoogle Scholar
  10. [10]
    S Demirezen, Ş Altındal and İ Uslu Curr. Appl. Phys. 13 53 (2013)ADSCrossRefGoogle Scholar
  11. [11]
    İ Dökme and Ş Altındal Fiber Poly. 15 2253 (2014)CrossRefGoogle Scholar
  12. [12]
    Ö Güllü, M Çankaya, M Biber and A Türüt J. Phys: Condens. Matter. 20 215210 (2008)ADSGoogle Scholar
  13. [13]
    S Parui, R Ruiter, P J Zomer, M Wojtaszek, B J Van Wees and T Banerjee J. Apply. Phys. 116 244505 (2014)ADSCrossRefGoogle Scholar
  14. [14]
    Ç Bilkan, S Zeyrek, S E San and Ş Altındal Mater. Sci. in Semicond. Proces. 32 137 (2015)CrossRefGoogle Scholar
  15. [15]
    H G Çetinkaya, H Tecimer, H Uslu and Ş Altındal Curr. Appl. Phys. 13 1150 (2013)ADSCrossRefGoogle Scholar
  16. [16]
    S A Yeriskin, H İ Ünal and B Sarı J. Appl. Polym. Sci. 120 390 (2011)CrossRefGoogle Scholar
  17. [17]
    H S Soliman, A Faidah, Sh El-Ghamdy and A A Hindi Phys. B Cond. Matter. 406 234512 (2011)ADSCrossRefGoogle Scholar
  18. [18]
    H Li, J Wei, Y Ojan, J Zhang, J Yu and G Wang Colloids Surf. A: Physochem. Eng. Asp. 449 148 (2014)CrossRefGoogle Scholar
  19. [19]
    H Yang et al. Science 336 1140 (2012)ADSCrossRefGoogle Scholar
  20. [20]
    M D Stoller, S Park, Y Zhu, J An, R S Ruoff Nano Lett. 8 3498 (2008)ADSCrossRefGoogle Scholar
  21. [21]
    A Kaya, S Alialy, S Demirezen, M Balbaşı, S A Yerişkin and A Aytemur Ceram. Int. 42 322 (2016)Google Scholar
  22. [22]
    E Özavcı, S Demirezen, U Aydemir and Ş Altındal Sens. Actuators: A Phys. 194 259 (2013)CrossRefGoogle Scholar
  23. [23]
    E H Nicollian and A Goetzberger Bell Syst. Tech. J. 46 1055 (1967)CrossRefGoogle Scholar
  24. [24]
    E H Nicollian and J R Brews MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley) (1982)Google Scholar
  25. [25]
    S M Sze Physics of Semiconductor Devices, 2nd edn. (New York: Wiley) (1980)Google Scholar
  26. [26]
    H C Card and E H Rhoderick J. Phys. D Appl. Phys. 4 1589 (1971)ADSCrossRefGoogle Scholar
  27. [27]
    R T Tung Phys. Rev. B 45 13509 (1992)ADSCrossRefGoogle Scholar
  28. [28]
    P Chattopadhyay and D P Haldar Appl. Surf. Sci. 143 287 (1999)ADSCrossRefGoogle Scholar
  29. [29]
    E H Rhoderick and R H Williams Metal Semiconductor Contacts, 2nd edn. (Oxford:Clarendon Press) (1988)Google Scholar
  30. [30]
    M K Hudait and S B Krupanidhi Phys. B 307 125 (2001)ADSCrossRefGoogle Scholar
  31. [31]
    J H Werner and H H Güttler J. Appl. Phys. 69 1522 (1991)ADSCrossRefGoogle Scholar
  32. [32]
    R Hackam and P Harrop IEEE Trans. Electron Devices 19 1231 (1972)ADSCrossRefGoogle Scholar
  33. [33]
    Zs J Horvarth Solid-State Electron 39 176 (1996)ADSCrossRefGoogle Scholar
  34. [34]
    R F Schmitsdorf, T U Kampen and W Mönch Surf. Sci. 324 249 (1995)ADSCrossRefGoogle Scholar
  35. [35]
    A F Ozdemir, A Turut and A Kökçe Semicond. Sci. Technol. 21 298 (2006)ADSCrossRefGoogle Scholar
  36. [36]
    H Tecimer, S Aksu, Y Atasoy, E Bacaksız and Ş Altındal Sens. Actuators: A Phys. 185 73 (2012)CrossRefGoogle Scholar
  37. [37]
    T U Kampen, S Park and D R T Zahn Appl. Surf. Sci. 190 461 (2002)ADSCrossRefGoogle Scholar
  38. [38]
    A R V Roberts and D A Evans Appl. Phys. Lett. 86 072105 (2005)ADSCrossRefGoogle Scholar
  39. [39]
    S Chand and J Kumar Semicond. Sci. Technol. 11 1203 (1996)ADSCrossRefGoogle Scholar
  40. [40]
    N Tugluoglu, H Koralay, K.B. Akgül, Ş Çavdar, Indian J. Phys. 90 43 (2016)ADSCrossRefGoogle Scholar
  41. [41]
    V R Reddy Indian J. Phys. 89 463 (2015)ADSCrossRefGoogle Scholar
  42. [42]
    D Sri Silpa, P Sreehith, V R Reddy and V Janardhanam Indian J. Phys. 90 29 (2016)CrossRefGoogle Scholar
  43. [43]
    S Altındal J. Mater. Electron. Devices 1 42 (2015)Google Scholar
  44. [44]
    Y M Reddy, R Padmasuvarna, T L Narasappa, R Padma and V R Reddy Indian J. Phys. 89 1161 (2015)Google Scholar
  45. [45]
    A Bobby, N Shiwakoti, P S Gupta and B K Antony Indian J. Phys. 90 307 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  • S. Altındal Yerişkin
    • 1
  • M. Balbaşı
    • 1
  • S. Demirezen
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringGazi UniversityAnkaraTurkey
  2. 2.Department of Computer Aided Design and Animation, Vocational School of DesignAmasya UniversityAmasyaTurkey

Personalised recommendations