Indian Journal of Physics

, Volume 91, Issue 4, pp 439–443 | Cite as

Black phosphorus based saturable absorber for Nd-ion doped pulsed solid state laser operation

Original Paper

Abstract

In this paper, the use of black phosphorus (BP) as a saturable absorber in a Q-switched Nd-ion doped solid state laser is presented. Few layers of BP in isopropyl alcohol are obtained by liquid phase exfoliation. The BP nanosheets with thicknesses in the range of 15–20 nm are deposited onto a K9 glass substrate. By inserting the BP nanosheets into a diode pumped Nd-ion doped solid state laser, stable Q-switched lasing at 0.9, 1.06, 1.3 μm is obtained. Using this approach, we have achieved a short pulse duration down to 219 ns, a high pulse energy of up to 6.5 μJ, and the corresponding peak power of 30 W. Our results show that the BP saturable absorber functions well in a Nd-ion doped solid state laser for pulsed laser generation.

Keywords

1 μm Laser Black phosphorus Passively Q switching Solid state laser 

PACS Nos

42.60.Gd 42.70.Hj 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61178060) and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province (2012JQ18).

References

  1. [1]
    J Kalshoven, P Dabney IEEE Geosci. Remote S. 31 438 (1993)ADSCrossRefGoogle Scholar
  2. [2]
    M Feit, A Komashko, M Perry, A Rubenchik, B Stuart IEEE Lasers Electro-Opt. 98 525 (1998)Google Scholar
  3. [3]
    K Suizu and K Kawase IEEE J. Sel. Top. Quant. 14 295 (2008)CrossRefGoogle Scholar
  4. [4]
    J Spinhirne IEEE Trans. Geosci. Remote 31 48 (1993)ADSCrossRefGoogle Scholar
  5. [5]
    K Drexhage and U Müller-Westerhoff IEEE J. Quantum Electron. 8 759 (1972)ADSCrossRefGoogle Scholar
  6. [6]
    Z Burshtein, P Blau, Y Kalisky, Y Shimony, and M Kikta IEEE J. Quantum Electron. 34 292 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    A Malyarevich, I Denisov, K Yumashev, V Mikhailov, R Conroy and B Sinclair Appl. Phys. B 67 555 (1998)ADSCrossRefGoogle Scholar
  8. [8]
    A Kalintsev, A Mak, L Soms, A Stepanov and A Tarasov Sov. Phys. Tech. Phys. 26 1267 (1981)Google Scholar
  9. [9]
    U Keller, D A B Miller, G D Boyd, T H Chiu, J F Ferguson, and M T Asom Opt. Lett. 17 505 (1992)ADSCrossRefGoogle Scholar
  10. [10]
    U Keller et al. IEEE J. Sel. Top. Quantum Electron. 2 435 (1996)CrossRefGoogle Scholar
  11. [11]
    U Keller Appl. Phys. B 100 15 (2010)ADSCrossRefGoogle Scholar
  12. [12]
    K S Novoselov et al. Science 306 666 (2004)ADSCrossRefGoogle Scholar
  13. [13]
    Q Bao et al. Nano Res. 4 297 (2011)MathSciNetCrossRefGoogle Scholar
  14. [14]
    Q Bao, H Zhang, Y Wang, Z Ni, Y Yan, Z Shen, K Loh and D Tang Adv. Funct. Mater. 19 3077 (2009)CrossRefGoogle Scholar
  15. [15]
    H Yu et al. ACS Nano 4 7582 (2010)CrossRefGoogle Scholar
  16. [16]
    J Xu et al. Opt. Lett. 37 2652 (2012)ADSCrossRefGoogle Scholar
  17. [17]
    C Wei et al. Opt. Lett. 38 3233 (2013)ADSCrossRefGoogle Scholar
  18. [18]
    Y Chen et al. IEEE J. Sel. Top. Quantum Electron. 20 0900508 (2014)Google Scholar
  19. [19]
    J Sotor, G Sobon and K M Abramski Opt. Express 22 13244 (2014)ADSCrossRefGoogle Scholar
  20. [20]
    H Zhang et al. Opt. Express 22 7249 (2014)ADSCrossRefGoogle Scholar
  21. [21]
    H Xia et al. Opt. Express 22 17341 (2014)ADSCrossRefGoogle Scholar
  22. [22]
    H Liu et al. Opt. Lett. 39 4591 (2014)ADSCrossRefGoogle Scholar
  23. [23]
    G Zhao et al. Adv. Funct. Mater. 25 5292 (2015)CrossRefGoogle Scholar
  24. [24]
    S Wang et al. Adv. Mater. 26 3538 (2014)CrossRefGoogle Scholar
  25. [25]
    L Li et al. Nat. Nanotechnol. 9 372 (2014)ADSCrossRefGoogle Scholar
  26. [26]
    H Liu et al. ACS Nano 8 4033 (2014)CrossRefGoogle Scholar
  27. [27]
    V Tran, R Soklaski, Y Liang and L Yang Phys. Rev. B 89 235319 (2014)ADSCrossRefGoogle Scholar
  28. [28]
    J Qiao, X Kong, Z Hu, F Yang and W Ji Nat. Commun. 5 4475 (2014)Google Scholar
  29. [29]
    S Lu et al. Opt. Express 23 11183 (2015)ADSCrossRefGoogle Scholar
  30. [30]
    Z Luo et al. Opt. Express 23 20030 (2015)ADSCrossRefGoogle Scholar
  31. [31]
    Y Chen et al. Opt. Express 23 12823 (2015)ADSCrossRefGoogle Scholar
  32. [32]
    Z Qin et al. Opt. Express 23 24713 (2015)ADSCrossRefGoogle Scholar
  33. [33]
    J Sotor, G Sobon, W Macherzynski, P Paletko and K Abramski Appl. Phys. Lett. 107 051108 (2015)ADSCrossRefGoogle Scholar
  34. [34]
    B Zhang et al. Opt. Lett. 40 3691 (2015)ADSCrossRefGoogle Scholar
  35. [35]
    J Ma et al. Opt. Express 23 22643 (2015)ADSCrossRefGoogle Scholar
  36. [36]
    L Kong et al. Laser Phys. Lett. 13 045801 (2015)ADSCrossRefGoogle Scholar
  37. [37]
    R Zhang et al. Adv. Opt. Mater. 3 1787 (2015)CrossRefGoogle Scholar
  38. [38]
    V Nicolosi, M Chhowalla, M Kanatzidis, M Strano, and J Coleman Science 340 1226419 (2013)CrossRefGoogle Scholar
  39. [39]
    W Lu et al. Nano Res. 7 853 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  1. 1.College of Physics and EngineeringQufu Normal UniversityQufuChina
  2. 2.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations