Indian Journal of Physics

, Volume 91, Issue 4, pp 431–438 | Cite as

Characteristics study of projectile’s lightest fragment for 84Kr36–emulsion interaction at around 1 A GeV

Original Paper

Abstract

In this article, we present the results of our investigations on the projectile’s lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile’s lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile’s lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile’s lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile’s lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile’s lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile’s lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile’s lightest fragment (proton) increases with increasing the target mass number.

Keywords

Nuclear emulsion Projectile’s lightest fragment (proton) KNO scaling Multiplicity and normalized multiplicity 

PACS Nos.

25.75.-q 29.40.Rg 25.70.Mn 25.70.Pq 

Notes

Acknowledgements

We are thankful to all the technical staff of GSI, Germany for exposing nuclear emulsion detector with 84Kr36 beam. The authors are grateful to the DST, New Delhi for financial support.

References

  1. [1]
    M K Singh, A K Soma, R Pathak and V Singh Indian J. Phys. 88 323 (2014)ADSCrossRefGoogle Scholar
  2. [2]
    J-S Li, D-H Zhang, H-L Li and N Yasuda Nucl. Instrum. Methods Phys. Res. B 307 503 (2013)ADSCrossRefGoogle Scholar
  3. [3]
    B S Nilsen, C J Waddington, J R Cummings, T L Garrard, and J Klarmann Phys. Rev. C 52 6 (1995)CrossRefGoogle Scholar
  4. [4]
    S A Krasnov et al. Czechoslov. J. Phys. 46 6 (1996)Google Scholar
  5. [5]
    M K Singh, A K Soma, R Pathak and V Singh Indian J. Phys. 87 59 (2013)Google Scholar
  6. [6]
    V Singh, S K Tuli, B Bhattacharjee, S Sengupta and A Mukhopadhyay arXiv:nucl-ex/0412049v1 (2004)
  7. [7]
    N S Chouhan, M K Singh, V Singh and R Pathak Indian J. Phys. 87 1263 (2013)ADSCrossRefGoogle Scholar
  8. [8]
    M K Singh, R Pathak and V Singh Indian J. Phys. 84 1257 (2010)ADSCrossRefGoogle Scholar
  9. [9]
    A Abdelsalam and B M Badawy J. Nucl. Radiat. Phys. 3 109 (2008)Google Scholar
  10. [10]
    J Knoll and J Hufner Nucl. Phys. A 308 500 (1978)ADSCrossRefGoogle Scholar
  11. [11]
    M Gauylassy and S K Kauffmann Phys. Rev. Lett. 40 298 (1978)ADSCrossRefGoogle Scholar
  12. [12]
    R R Joseph, I D Ojha and S K Tuli J. Phys. G Nucl. Part Phys. 15 1805 (1989)ADSCrossRefGoogle Scholar
  13. [13]
    M K Singh, A K Soma, R Pathak and V Singh Indian J. Phys. 85 1523 (2011)Google Scholar
  14. [14]
    B Bhattacharjee, A Mukhopadhyay, V Singh, S K Tuli and S Sengupta Radiat. Meas. 36 291 (2003)CrossRefGoogle Scholar
  15. [15]
    E Firu et al. Roman. Rep. Phys. 63 425 (2011)Google Scholar
  16. [16]
    S Fakhraddin and M A Rahim Phys. Scr. 78 015101 (2008)ADSCrossRefGoogle Scholar
  17. [17]
    F-H Liu Chin. J. Phys. 41 486 (2003)Google Scholar
  18. [18]
    B Cai-Yan and Z Dong-Hai Chin. Phys. C 35 436 (2011)ADSCrossRefGoogle Scholar
  19. [19]
    M Tariq, M Zafar, A Tufail and S Ahmad Int. J. Mod. Phys. E 4 347 (1995)ADSCrossRefGoogle Scholar
  20. [20]
    E S Basova, V S Navotny, N V Petrov, T P Trofimova and B P Tursunov Phys. At. Nucl. 60 1650 (1997)Google Scholar
  21. [21]
    N P Andreeva, Z V Anzon and V I Bubnov Sov. J. Nucl. Phys. 47 102 (1988)Google Scholar
  22. [22]
    G M Chernov, K G Gulamov, U G. Gulyamov, V S Navotny, N V Petrov and L N Svechnikova Nucl. Phys. A 412 534 (1984)ADSCrossRefGoogle Scholar
  23. [23]
    R A Bondarenko, K G Gulamov, U G Gulyamov and G M Chernov Sov. J. Nucl. Phys. 38 903 (1983)Google Scholar
  24. [24]
    Z Koba, H B Nielsen and P Olesen Nucl. Phys. B 40 317 (1972)ADSCrossRefGoogle Scholar
  25. [25]
    P L Jain and M M Aggarwal Phys. Rev. C 33 5 (1986)CrossRefGoogle Scholar
  26. [26]
    F-H Liu and Y A Panebratsev Il Nuov. Cimen. Note. Bre. 111 10 (1998)Google Scholar
  27. [27]
    F-H Liu Phys. Rev. C 62 024613 (2000)Google Scholar
  28. [28]
    V Singh PhD Thesis (Banaras Hindu University Varanasi, India) (1998)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  • N. Marimuthu
    • 1
    • 2
  • V. Singh
    • 1
  • S. S. R. Inbanathan
    • 2
  1. 1.Physics Department, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Post Graduate and Research Department of PhysicsThe American CollegeMaduraiIndia

Personalised recommendations