Advertisement

Indian Journal of Physics

, Volume 91, Issue 4, pp 461–469 | Cite as

Effect of doping on amplitude modulation of space-charge wave in semiconductor quantum plasma

Original Paper

Abstract

To describe the modulational instability of space-charge waves in an n-type compensated semiconductor plasma, a nonlinear Schrödinger equation has been derived by using quantum hydrodynamical model and standard multiple scale perturbation technique. It has been shown that compensation factor (i.e. relative proportion of donor, acceptor and intrinsic carrier concentrations) and quantum diffraction parameter play important role in generating bright and dark envelope solitons within the semiconductor. Instability growth rate is also found to depend sensitively on the compensation factor and quantum diffraction parameter. From the linear dispersion relation it has been found that inclusion of quantum parameter gives rise to two new wave modes of purely quantum origin. Further the effect of compensation factor and quantum diffraction parameter on the linear dispersion characteristics has been analyzed. It has also been found that due to parabolicity of conduction band the group velocity of space-charge wave becomes dependent on compensation factor and quantum diffraction parameter.

Keywords

Electron–hole quantum plasma QHD model n-Type compensated semiconductor Space-charge waves Modulational instability NLSE Envelope solitons 

PACS Nos.

72.30. +q 52.35.Sb 

References

  1. [1]
    D Bohm Phys. Rev. 85 166 (1952)ADSCrossRefGoogle Scholar
  2. [2]
    D Bohm and D. Pines Phys. Rev. 92 609 (1953)ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D Pines Nucl. Energy C Plasma Phys. Accel. Thermonucl. 2 5 (1961)MathSciNetCrossRefGoogle Scholar
  4. [4]
    V S Filinov, M Bonitz, P Levashov, V E Fortov, W Ebeling, M Schlanges and S W Koch J. Phys. A Math. Gen. 36 5921 (2003)ADSCrossRefGoogle Scholar
  5. [5]
    G Manfredi Fields Inst. Commun. 46 263 (2005)Google Scholar
  6. [6]
    S L Shapiro and S A Teukolsky Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Weinheim: Wiley-VCH) (1983)CrossRefGoogle Scholar
  7. [7]
    S Ali, W M Moslem, P K Shukla and R Schlickeiser Phys. Plasmas 14 082307 (2007)ADSCrossRefGoogle Scholar
  8. [8]
    C L Gardner SIAM J. Appl. Math. 54 409 (1994)ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    N Crouseilles, P A Hervieux and G Manfredi Phys. Rev. B 78 155412 (2008)ADSCrossRefGoogle Scholar
  10. [10]
    S A Maier Plasmonics (New York: Springer) (2007)Google Scholar
  11. [11]
    M F Tsai, H Lin, C Lin, S Lin, S Wang, M Lo, S Cheng, M Lee, and W Chang Phys. Rev. Lett. 101 267402 (2008)ADSCrossRefGoogle Scholar
  12. [12]
    K Seeger Semiconductor Physics, 9th edn. (Berlin: Springer) (2004)CrossRefMATHGoogle Scholar
  13. [13]
    G Manfredi and P A Hervieux Appl. Phys. Lett. 91 061108 (2007)ADSCrossRefGoogle Scholar
  14. [14]
    F Haas, G Manfredi, P K Shukla and P A Hervieux Phys. Rev. B 80 073301 (2009)ADSCrossRefGoogle Scholar
  15. [15]
    G Manfredi and F Haas Phys. Rev. B. 64 075316 (2001)ADSCrossRefGoogle Scholar
  16. [16]
    N Nimje, S Dubey and S Ghosh Indian J Phys. 84 1567 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    N Nimje, S Dubey and S Ghosh Indian J Phys. 86 749 (2012)ADSCrossRefGoogle Scholar
  18. [18]
    S Ghosh, P Thakur and S Salimullah Indian J. Pure Appl. Phys. 44 235 (2006)Google Scholar
  19. [19]
    C L Gardner and C Ringhofer VLSI Des. 8 143 (1998)CrossRefGoogle Scholar
  20. [20]
    L Wei and Y N Wang Phys. Rev. B 75 193407 (2007)ADSCrossRefGoogle Scholar
  21. [21]
    A A Toropov and T V Shubina Plasmonic Effects in Metal-Semiconductors Nanostructures (Oxford: Oxford University Press) (2015)CrossRefGoogle Scholar
  22. [22]
    M M Murname, H C Kapteyn, M D Rosen and R W Falcone Science 251 531 (1991)ADSCrossRefGoogle Scholar
  23. [23]
    B Ghosh, S Paul and S Banerjee World Acad. Sci. Eng. Technol. Int. J. Phys. Nucl. Sci. Eng. 8 954 (2014)Google Scholar
  24. [24]
    A Amo, J Lefrère, S Pigeon, C Adrados, C Ciuti, I Carusotto, R Houdré, E Giacobino and A Bramati Nat. Phys. 5 805 (2009)CrossRefGoogle Scholar
  25. [25]
    O A Egorov, D V Skryabin, A V Yulin and F Lederer Phys. Rev. Lett. 102 153904 (2009)ADSCrossRefGoogle Scholar
  26. [26]
    M Hercher J. Opt. Soc. Am. 54 563 (1964)Google Scholar
  27. [27]
    R Y Chiao, E Garmire and C H Townes Phys. Rev. Lett. 13 479 (1964)ADSCrossRefGoogle Scholar
  28. [28]
    Y Wang and X Lu Phys. Plasmas 21 022107 (2014)ADSCrossRefGoogle Scholar
  29. [29]
    L F Mollenauer, R H Stolen and J P Gordon Phys. Rev. Lett. 45 1095 (1980)ADSCrossRefGoogle Scholar
  30. [30]
    B A Kalinikos, N G Kovshikov and A N Slavin JETP Lett. 38 413 (1983)ADSGoogle Scholar
  31. [31]
    B A Kalinikos, N G Kovshikov and A N Slavin Sov. Phys. JETP 67 303 (1988)Google Scholar
  32. [32]
    B A Kalinikos, N G Kovshikov and A N Slavin Sov. Tech. Phys. Lett. 10 392 (1984)Google Scholar
  33. [33]
    K Tai, A Hasegawa and A Tomita Phys. Rev. Lett. 56 135 (1986)ADSCrossRefGoogle Scholar
  34. [34]
    M Wu, B A Kalinikos and C E Patton Phys. Rev. Lett. 93 157207 (2004)ADSCrossRefGoogle Scholar
  35. [35]
    S Guha and P K Sen J. Appl. Phys. 50 5387 (1979)ADSCrossRefGoogle Scholar
  36. [36]
    G Sharma and S Ghosh Eur. Phys. J. D 11 301 (2000)ADSCrossRefGoogle Scholar
  37. [37]
    M R Amin Phys. Plasmas 22 032303 (2015)ADSCrossRefGoogle Scholar
  38. [38]
    M R Amin J. Appl. Phys. 107 023307 (2010)ADSCrossRefGoogle Scholar
  39. [39]
    G Couton, H Maillotte and M Chauvet J. Opt. B Quantum Semiclass. Opt. 6 S223 (2004)ADSCrossRefGoogle Scholar
  40. [40]
    C N Lashmore-Davies Phys. Fluids 19 587 (1976)ADSCrossRefGoogle Scholar
  41. [41]
    D R Anderson, S Datta and R L Gunshor J. Appl. Phys. 54 5608 (1983)ADSCrossRefGoogle Scholar
  42. [42]
    V Grimalsky, E Gutierrez-D, A Garcia-B and S. Koshevaya Microelectron. J. 37 395 (2006)CrossRefGoogle Scholar
  43. [43]
    V I Berezhiani, V Skarka and R Miklaszewski Phys. Rev. B 57 6251 (1998)ADSCrossRefGoogle Scholar
  44. [44]
    R C Jayasinghe, Y F Lao, A G U Perera, M Hammer, C F Cao and H Z Wu J. Phys. Condens. Matter 24 435803 (2012)ADSCrossRefGoogle Scholar
  45. [45]
    B Ghosh and K P Das Plasma Phys. Control Fusion 350 969 (1985)ADSCrossRefGoogle Scholar
  46. [46]
    B Ghosh and S Banerjee J. Astrophys. 2014 Art ID 785670 (2014)Google Scholar
  47. [47]
    B Ghosh and S Banerjee J. Plasma Phys. 81 905810308 (1–10) (2015)Google Scholar
  48. [48]
    B Ghosh and S Banerjee Afr. Rev. Phys. 10: 0031 225 (2015)Google Scholar
  49. [49]
    B Ghosh and S Banerjee and S Chandra J. Phys. Chem. Sci. 3(2) 1–6 (2015)Google Scholar
  50. [50]
    B Ghosh and S Banerjee Turk. J. Phys. 40 1–11 (2016)CrossRefGoogle Scholar
  51. [51]
    S H Glenzer and R Redmer Rev. Mod. Phys 81 625 (2009)ADSCrossRefGoogle Scholar
  52. [52]
    M C Steele and B Vural Wave Interaction in Solid State Plasmas 137 (McGraw Hill, New York) (1969)MATHGoogle Scholar
  53. [53]
    S Ghosh and V K Agrawal Ind. J. Phys. A 59 55 (1985)Google Scholar
  54. [54]
    S Ghosh and V K Agrawal Phys. Stat. Sol. B 102 K107 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  1. 1.Department of ElectronicsVidyasagar CollegeKolkataIndia
  2. 2.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations