Indian Journal of Physics

, Volume 91, Issue 4, pp 445–451 | Cite as

Optical, elastic and thermal properties of ZB-AlN semiconductor from first-principle calculations

Original Paper
  • 123 Downloads

Abstract

The optical, elastic and thermal properties of zincblende aluminium nitride have been studied. The refractive index, absorption coefficient, reflectivity, dielectric constant, extinction coefficient, and energy-loss spectrum have been calculated using the pseudo-potential method under density functional theory at different pressures. The heat capacity, Debye temperature and phonon frequencies have been calculated using CASTEP code at 0 GPa. The elastic stiffness constants, bulk modulus, Young’s modulus, shear modulus and pressure derivatives of elastic constants have also been calculated. The calculated results are compared with the available experimental and theoretical data. Reasonably good agreement has been found between them.

Keywords

Optical properties Thermal properties Elastic properties DFT calculations 

PACS Nos.

78.20.Ci 65.40.Ba 

Notes

Acknowledgements

The authors are grateful to Prof. D. C. Panigrahi, Director, IIT(ISM), Dhanbad for his continuous encouragement and inspiration in conducting this work.

References

  1. [1]
    Y F Wu, B P Keller, S Keller, D Kapolnek, P Kozodoy, S P Denbaars and U K Mishra Appl. Phys. Lett. 69 1438 (1996)Google Scholar
  2. [2]
    V V Kuryatkov, H Temkin, J C Campbell and R D Dupuis Appl. Phys. Lett. 78 3340 (2001)Google Scholar
  3. [3]
    S Goumri-Said, M B Kanoun, A E Merad, G Merad, H Aoura and F Wright J. Appl. Phys. 82 2833 (1997)CrossRefGoogle Scholar
  4. [4]
    F Peng, D Chen, H Fu and X Cheng Physica B 403 4259 (2008)Google Scholar
  5. [5]
    F Wright J. Appl. Phys. 82 2833 (1997)ADSCrossRefGoogle Scholar
  6. [6]
    K Kim, W R L Lambrecht and B Segall Phys. Rev. B 53 16310 (1996)CrossRefGoogle Scholar
  7. [7]
    M Z M Yosoff, Z Hassan, H A Hassan, M J Abdullah, M Rusop and M Z Pakhuruddin Mater. Sci. Semicond. Proc. 34 214 (2015)CrossRefGoogle Scholar
  8. [8]
    V Kumar and S K Tripathy J. Alloys Compd. 583 101 (2014)CrossRefGoogle Scholar
  9. [9]
    H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T H Fischer and J Almlof J. Phys. Chem. 96 9768 (1992)CrossRefGoogle Scholar
  11. [11]
    M C Payne, M P Teter, D C Allen, T A Arias and J D Joannopoulos Rev. Mod. Phys. 64 1045 (1992)ADSCrossRefGoogle Scholar
  12. [12]
    H Ehrenreich and M L Cohen Phys. Rev. B 62 7071 (2000)CrossRefGoogle Scholar
  13. [13]
    S Saha and T P Sinha Phys. Rev. B 6 8828 (2000)ADSCrossRefGoogle Scholar
  14. [14]
    P Y Yu and M Cardona Fundamentals of Semiconductors (Berlin: Springer) (1996)CrossRefMATHGoogle Scholar
  15. [15]
    C A Draxl and J O Sofo Comput. Phys. Commun. 175 1 (2006)ADSCrossRefGoogle Scholar
  16. [16]
    L Akasaki and M Hashimoto Solid State Communs. 5 851 (1967)ADSCrossRefGoogle Scholar
  17. [17]
    V W L Chin, T L Tansley and T Osotchan J. Appl. Phys. 75 7365 (1994)ADSCrossRefGoogle Scholar
  18. [18]
    A Bouhemadou and R Khenata Comput. Mater. Sci. 39 803 (2007)CrossRefGoogle Scholar
  19. [19]
    J H Edgar Properties of Group III Nitrides Electronic Materials Information Service (EMIS) Data Reviews Series (London: Institution of Electrical Engineers) (1994)Google Scholar
  20. [20]
    R Srinivas, D Sulze and H Schwarz J. Am. Chem. Soc. 112 8334 (1990)CrossRefGoogle Scholar
  21. [21]
    Z Wei, C Yan, Z Jun and C Xiang-Rong Chin. Phys. B 18 1207 (2009)Google Scholar
  22. [22]
    S Goumri-Said, M B Kanoun, A E Merad, G B Merad and H Aourag Chem. Phys. 302 135 (2004)Google Scholar
  23. [23]
    L Kleinman Phys. Rev. B 128 2614 (1962)ADSCrossRefGoogle Scholar
  24. [24]
    M B Kanoun, A E Merad, J Cibert, H Aourag and G Merad J. Alloys Compd. 366 86 (2004)CrossRefGoogle Scholar
  25. [25]
    A E Merad, H Aourang, B Khalifa, C Mathieu, G Merad Superlattice Microstruct. 30 241 (2001)ADSCrossRefGoogle Scholar
  26. [26]
    V I Gavrilenko and R Q Wu Phys. Rev. B 61 2632 (2000)ADSCrossRefGoogle Scholar
  27. [27]
    F D Murnaghan Proc. Nat. Acad. Sci. USA 30 244 (1944)Google Scholar
  28. [28]
    M P Thompson and G W Auner Cubic (zinc-blende) aluminium nitride (Patent No. US6518637 B1) (2003)Google Scholar
  29. [29]
    N E Christensen and I Gorczyca Phys. Rev. B 50 4397 (1994)ADSCrossRefGoogle Scholar
  30. [30]
    K Shimada, T Sota, K Suzuki J. Appl. Phys. 84 4951 (1998)ADSCrossRefGoogle Scholar
  31. [31]
    I Gorczyca, N E Christensen, E L P y Blanca, C O Rodriguez Phys. Rev. B 51 11936 (1995)ADSGoogle Scholar
  32. [32]
    K Miwa and A Fukumoto Phys. Rev. B 38 1339 (1993)Google Scholar
  33. [33]
    K Karch, J M Wagner and F Bechstedt Phys. Rev. B 57 7043 (1998)CrossRefGoogle Scholar
  34. [34]
    C Stampfl and C G Vande Walle Phys. Rev. B 59 5521 (1999)ADSCrossRefGoogle Scholar
  35. [35]
    A Trampert, O Brandt, K H Ploog, J I Pankove and T D Moustakas (eds) Crystal Structure of Group III Nitrides (San Diego: Academic) (1998)Google Scholar
  36. [36]
    D Fulcher, X Y Cui, B Delley, C Stampfl Phys. Rev. B 85 184106 (2012)ADSCrossRefGoogle Scholar
  37. [37]
    M B Kanoun, S Goumri-Said, A E Merad, G Merad, J Cibert and H Aourag Semicond. Sci. Technol. 19 1220 (2004)ADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations