Advertisement

Indian Journal of Physics

, Volume 91, Issue 4, pp 453–460 | Cite as

Band structure of one-dimensional plasma photonic crystals using the Fresnel coefficients method

Original Paper

Abstract

The current study has examined the band structures of two types of photonic crystals (PCs). The first is a one-dimensional metamaterial photonic crystal (1DMMPC) composed of double-layered units for which both layers of each unit are dielectric. The second type is a very similar one-dimensional plasma photonic crystal (1DPPC) also composed of double-layered units in which the first layer is a dielectric material but the second is a plasma layer. This study compares the band structures of the 1DMMPC with specific optical characteristics of the 1DPPC using the Fresnel coefficients method and also compares the results of this method with the results of the transfer matrix method. It is concluded that the dependency of the electric permittivity of the plasma layer on the incident field frequency causes differences in the band structures in 1DMMPC and 1DPPC for both TE and TM polarizations and their gaps reside in different frequencies. The band structures of the 1DMMPC and 1DPPC are confirmed by the results of the transfer matrix method.

Keywords

Band structure Plasma photonic crystal Fresnel coefficient Plasma layer Metamaterial photonic crystal 100% reflection 

PACS Nos.

42.70.Qs 78.20.Ci 41.20.Jb 78.67.Pt 

Notes

Acknowledgements

This study was supported by Urmia University in Urmia, Iran (Grant No. 10.195).

References

  1. [1]
    D Shir, E C Nelson, Y C Chen, A Brzezinski, H Liao, P V Braun, P Wiltzius, K H A Bogart and J A Rogers Appl. Phys. Lett. 94 011101 (2009)Google Scholar
  2. [2]
    M Araghchini et al. I Celanovic and J D Joannopoulos J. Vac. Sci. Technol. B 29 061402-1 (2011)CrossRefGoogle Scholar
  3. [3]
    C C Cheng and A Scherer J. Vac. Sci. Technol. B 13 2696 (1995)ADSCrossRefGoogle Scholar
  4. [4]
    P R Villeneuve, S Fan, S G Johnson and J D Joannopoulos IEE Proc. Optoelec 145 384 (1998)CrossRefGoogle Scholar
  5. [5]
    M E Walsh PhD Thesis (MIT, USA) (2004)Google Scholar
  6. [6]
    L C Liang, W Tao and P J Xiong optoelectron. Lett. 6 0363 (2010)ADSCrossRefGoogle Scholar
  7. [7]
    M Upadhyay, S K Awasthi, L Shiveshwari, S N Shukla and S P Ojha Indian journal of physics 90 353 (2016)ADSCrossRefGoogle Scholar
  8. [8]
    A H AL-Janabi, H J Taher and S M Laftah Indian journal of physics 85 1299 (2011)Google Scholar
  9. [9]
    H Hojo, K Akimoto and A Mase Conference Digest on 28th Int. Conf. Infrared and Millimeter Waves (Otsu, Japan, Sept.28-Oct.2) 347 (2003)Google Scholar
  10. [10]
    H Hojo, N Uchida, K Hattori and A Mase Plasma and Fusion Research 1 021-1-2 (2006)Google Scholar
  11. [11]
    G Guida, A de Lustrac and A priou PIER 41 1 (2003)ADSCrossRefGoogle Scholar
  12. [12]
    E Yablonovitch Phys. Rev. Lett. 58 2059 (1987)ADSCrossRefGoogle Scholar
  13. [13]
    S John Phys. Rev. Lett. 58 2486 (1987)ADSCrossRefGoogle Scholar
  14. [14]
    H Hojo and A Mase plasma and fusion Research 80 89 (2004)Google Scholar
  15. [15]
    J D Joannopoulos, S G johnson, J N Winn and R D Meade photonic crystals: Molding the Flow of light (USA: Princeton, Princeton University Press) 2nd Ed. p 44 (2008)Google Scholar
  16. [16]
    J N Winn, Y Fink, S Fan and J D Joannopoulos Opt. Lett. 23 1573 (1998)ADSCrossRefGoogle Scholar
  17. [17]
    B Guo physics of plasmas 16 043508 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    B Guo plasma Science and Technology 11 18 (2009)ADSCrossRefGoogle Scholar
  19. [19]
    Z Wang and D Liu Appl. Phys. B 86 473 (2007)ADSCrossRefGoogle Scholar
  20. [20]
    B Guo and X M Qiu Optik 123 1390 (2012)CrossRefGoogle Scholar
  21. [21]
    Z Y Li and L L Lin Phys. Rev. E 67 046607 (2003)ADSCrossRefGoogle Scholar
  22. [22]
    J J Wu and J X Gao J Supercond Nov Magn 27 667 (2014)CrossRefGoogle Scholar
  23. [23]
    R A Depine, M L M Ricci, J A Monsoriu, E Silvestre and P Andres Phys. Lett A 364 352 (2007)ADSCrossRefGoogle Scholar
  24. [24]
    L G Wang, H Chen and S Y Zhu Phys. Rev. B 70 245102 (2004)ADSCrossRefGoogle Scholar
  25. [25]
    Y Fink, J N Winn, S Fan, C Chen, J Michel, J D Joannopoulos and E L Thomas Science 282 1679 (1998)ADSCrossRefGoogle Scholar
  26. [26]
    M Mansuripur Opt.& Phot. News 9 8 (1998)ADSGoogle Scholar
  27. [27]
    M Born and E Wolf Principles of Optics (England: Cambridge, Cambridge University Press) 7th Ed. p 38 (1999)CrossRefGoogle Scholar
  28. [28]
    J B Pendry, A J Holden, W J Stewart and I Youngs Phys. Rev. Lett. 76 4773 (1996)ADSCrossRefGoogle Scholar
  29. [29]
    V G Veselago Sov. Phys. Usp. 10 509 (1968)ADSCrossRefGoogle Scholar
  30. [30]
    D R Smith, W J Padilla, D C Vier, S C Nemat Nasser and S Schultz Phys. Rev. Lett. 84 4184 (2000)ADSCrossRefGoogle Scholar
  31. [31]
    D R Smith and N Kroll Phys. Rev. Lett. 85 2933 (2000)ADSCrossRefGoogle Scholar
  32. [32]
    A L Pokrovsky and A L Efros Phys. Rev. Lett. 89 093901 (2002)ADSCrossRefGoogle Scholar
  33. [33]
    J Li, L Zhou, C T Chan and P Sheng Phys. Rev. Lett. 90 083901 (2003)ADSCrossRefGoogle Scholar
  34. [34]
    H Jiang, H Chen, H Li, Y Zhang and S Zhu Appl. Phys. Lett. 83 5386 (2003)ADSCrossRefGoogle Scholar
  35. [35]
    H F Zhang, S B Liu, X K Kong, L Zou, C Z Li and W Qing physics of Plasmas 19 022103 (2012)ADSCrossRefGoogle Scholar
  36. [36]
    H Jiang, H Chen, H Li, Y Zhang, J Zi and S Zhu Phys. Rev. E 69 066607 (2004)ADSCrossRefGoogle Scholar
  37. [37]
    N Garcia, E Ponizovskaya and J Xiao Appl. Phys. Lett. 80 1120 (2002)ADSCrossRefGoogle Scholar
  38. [38]
    B Schwartz and R Piestun J. Opt. Soc. Am. B 20 2448 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  1. 1.Atomic and Molecular Group, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations