Indian Journal of Physics

, Volume 91, Issue 4, pp 403–412 | Cite as

First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCuCh (Ch = S, Se, Te)

  • A. K. M. Farid Ul Islam
  • M. A. Helal
  • M. N. H. Liton
  • M. Kamruzzaman
  • H. M. Tariqul Islam
Original Paper
  • 152 Downloads

Abstract

The optical properties of BiOCuCh and their dependency on the electronic structures are investigated using first principles study. Modified Perdew–Burke–Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.

Keywords

Oxychalcogen First principles Electronic band structure Optical properties BoltzTraP package 

PACS Nos.

71.20.Eh 72.30.+q 

References

  1. [1]
    G Hyett, N Barrier, S J Clarke and J Haderman J. Am. Chem. Soc. 129 11192 (2007)CrossRefGoogle Scholar
  2. [2]
    S J Clarke, P Adamson, S J C Herkelrath, O J Rutt, D R Parker, M J Pitcher and C F Smura Inorg. Chem. 47 8473 (2008)CrossRefGoogle Scholar
  3. [3]
    S H Elder, F J DiSalvo, L Topor and A Navrotsky Chem. Mater. 5 1545 (2002)CrossRefGoogle Scholar
  4. [4]
    A Fuertes Dalton Trans. 39 5942 (2010)CrossRefGoogle Scholar
  5. [5]
    C Zheng and R Hoffmann J. Am. Chem. Soc. 108 3078 (1986)CrossRefGoogle Scholar
  6. [6]
    R Hoffmann and C Zheng J. Phys. Chem. 89 4175 (1985)CrossRefGoogle Scholar
  7. [7]
    M C R Palazzi Acad. Sci., Se ´r. 2 292 789 (1981)Google Scholar
  8. [8]
    M Palazzi, C Carcaly and J Flahaut J. Solid State Chem. 35 150 (1980)ADSCrossRefGoogle Scholar
  9. [9]
    H Hiramatsu, H Yanagi, T Kamiya, K Ueda, M Hirano and H Hosono Chem. Mater. 20 326 (2008)CrossRefGoogle Scholar
  10. [10]
    A M Kusainova, P S Berdonosov, L G Akselrud, L N Kholodkovskaya, V A Dolgikh and B A Popovkin J. Solid State Chemistry 112 189 (1994)ADSCrossRefGoogle Scholar
  11. [11]
    W J Zhu, Y Z Huang, C Dong and Z X Zhao Mater. Res. Bull. 29 143 (1994)CrossRefGoogle Scholar
  12. [12]
    T Ohtani, Y Tachibana and Y Fujii J. Alloys Compd. 175 262 (1997)Google Scholar
  13. [13]
    V Pele, C Barreteau, D Berardan, L-D Zhao and N Dragoe J. Solid State Chem. 203 187 (2013)ADSCrossRefGoogle Scholar
  14. [14]
    I R Shein and A L Ivanovskii Solid State Commun. 150 640 (2010)ADSCrossRefGoogle Scholar
  15. [15]
    L N Kholodkovskaya, L G Akselrud, A M Kusainova, V A Dolgikh and B A Popovkin Mater. Sci. Forum 693 133 (1993)Google Scholar
  16. [16]
    P Vaqueiro et al J. Phys. Chem. Chem. Phys 17 31735 (2015)CrossRefGoogle Scholar
  17. [17]
    L D Zhao, D Berardan, Y L Pei, C Byl, L Pinsard-Gaudart and N Dragoe Appl. Phys. Lett. 97 092118 (2010)ADSCrossRefGoogle Scholar
  18. [18]
    J Li et al Energy Environ. Sci. 5 8543 (2012)CrossRefGoogle Scholar
  19. [19]
    F Li et al Energy Environ. Sci. 5 7188 (2012)CrossRefGoogle Scholar
  20. [20]
    C Barreteau, D Berardan, E Amzallag, L D Zhao and N Dragoe Chem. Mater. 24 3168 (2012)CrossRefGoogle Scholar
  21. [21]
    J Li et al J. Alloys Compd. 551 649 (2013)CrossRefGoogle Scholar
  22. [22]
    C Barreteau, D Berardan, L D Zhao and N Dragoe J. Mater. Chem. A 1 2921 (2013)CrossRefGoogle Scholar
  23. [23]
    L Pan, D Berardan, L Zhao, C Barreteau and N Dragoe Appl. Phys. Lett. 102 023902 (2013)ADSCrossRefGoogle Scholar
  24. [24]
    Y Liu et al J. Am. Chem. Soc. 133 20112 (2011)CrossRefGoogle Scholar
  25. [25]
    P Vaqueiro, G Guelou, M Stec, E Guilmeau and A V Powell J. Mater. Chem. A 1 520 (2013)CrossRefGoogle Scholar
  26. [26]
    I I Mazin Physical Review B 81 140508(R) (2010)ADSCrossRefGoogle Scholar
  27. [27]
    L X Pan, Q L Xia, S L Ye, N Ding and Z R Liu Trans. Nonferrous Met. Soc. China 22 1197 (2012)CrossRefGoogle Scholar
  28. [28]
    Y Pei et al NPG Asia Meterails 5 e47 (2013)CrossRefGoogle Scholar
  29. [29]
    D. Zou, S. Xie, Y. Liu, J. Lin and J. Li Journal of Materials Chemistry A 1 8888 (2013)CrossRefGoogle Scholar
  30. [30]
    J Ding, B Xu, Y Lin, C Nan and W Lie New Journal of Physics 17 083012 (2015)ADSCrossRefGoogle Scholar
  31. [31]
    D Berardan et al Materials 8 1043 (2015)ADSCrossRefGoogle Scholar
  32. [32]
    M D Segall et al J. Phys. Condens Matter 14 2717 (2002)ADSCrossRefGoogle Scholar
  33. [33]
    L Kleinman and D M Bylander Phys. Rev. Lett. 48 1425 (1982)ADSCrossRefGoogle Scholar
  34. [34]
    K F Garrity, J W Bennett, K M Rabe and D Vanderbilt Comput. Mater. Sci. 81 446 (2014)CrossRefGoogle Scholar
  35. [35]
    H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    G K Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006)ADSCrossRefGoogle Scholar
  37. [37]
    P S Berdonosov, A M Kusainova, L N Kholodkovskaya, V A Dolgikh, L G Akselrud and B A Popovkin J. Solid State Chem. 118 74 (1995)ADSCrossRefGoogle Scholar
  38. [38]
    E S Stampler, W C Sheets, M I Bertoni, W Prellier, T O Mason and K R Poeppelmeier Inorg. Chem. 47 10009 (2008)CrossRefGoogle Scholar
  39. [39]
    D J Singh and I I Mazin Phys. Rev. B: Condens. Matter 56 R1650 (1997)ADSCrossRefGoogle Scholar
  40. [40]
    S Saha, T P Sinha and A Mookerjee Phys. Rev. B 62 8828 (2000)ADSCrossRefGoogle Scholar
  41. [41]
    QJ Liu, ZT Liu, LP Feng, H Tian Physica B 405:4032 (2010)ADSCrossRefGoogle Scholar
  42. [42]
    D R Penn Phys. Rev. 128 2093 (1962)ADSCrossRefGoogle Scholar
  43. [43]
    S Berrah, A Boukortt and H Abid Physica E. 41 701 (2009)ADSCrossRefGoogle Scholar
  44. [44]
    A Delin, A O Eriksson, R Ahuja, B Johansson, M S Brooks and T Gasche Phys. Rev. B 54 1673 (1996)ADSCrossRefGoogle Scholar
  45. [45]
    F Wooten Optical properties of solids (New York: Academic Press) (1972)Google Scholar
  46. [46]
    J Tauc and A Menth J. Non-Crystals Solids 8 569 (1972)ADSCrossRefGoogle Scholar
  47. [47]
    R Saniz, L H Ye, T Shishidou and A J Freeman Phys. Rev. B 74 014209 (2006)ADSCrossRefGoogle Scholar
  48. [48]
    M Bass Handbook of Optics (Second edition vol. 2 ) (1995)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  • A. K. M. Farid Ul Islam
    • 1
  • M. A. Helal
    • 2
  • M. N. H. Liton
    • 2
  • M. Kamruzzaman
    • 3
  • H. M. Tariqul Islam
    • 4
  1. 1.Department of Computer Science and EngineeringBegum Rokeya UniversityRangpurBangladesh
  2. 2.Department of PhysicsBegum Rokeya UniversityRangpurBangladesh
  3. 3.Department of Physics and Materials ScienceCity University of Hong KongHong KongPeople’s Republic of China
  4. 4.Department of ChemistryBegum Rokeya UniversityRangpurBangladesh

Personalised recommendations