Advertisement

Indian Journal of Physics

, Volume 91, Issue 4, pp 383–390 | Cite as

Analytical threshold voltage modeling of ion-implanted strained-Si double-material double-gate (DMDG) MOSFETs

  • Ekta Goel
  • Balraj Singh
  • Sanjay Kumar
  • Kunal Singh
  • Satyabrata Jit
Original Paper

Abstract

Two dimensional threshold voltage model of ion-implanted strained-Si double-material double-gate MOSFETs has been done based on the solution of two dimensional Poisson’s equation in the channel region using the parabolic approximation method. Novelty of the proposed device structure lies in the amalgamation of the advantages of both the strained-Si channel and double-material double-gate structure with a vertical Gaussian-like doping profile. The effects of different device parameters (such as device channel length, gate length ratios, germanium mole fraction) and doping parameters (such as projected range, straggle parameter) on threshold voltage of the proposed structure have been investigated. It is observed that the subthreshold performance of the device can be improved by simply controlling the doping parameters while maintaining other device parameters constant. The modeling results show a good agreement with the numerical simulation data obtained by using ATLAS™, a 2D device simulator from SILVACO.

Keywords

Threshold voltage Ion-implanted Strained silicon Double-material double-gate (DMDG) 

PACS Nos.

85.30.-z 85.30.De 85.30.Kk 85.30.Tv 

References

  1. 1.
    J Welser, J L Hoyt and J F Gibbons IEEE Electron Device Lett. 15 100 (1994)ADSCrossRefGoogle Scholar
  2. [2]
    M Jurczak, T Skotnicki, G Ricci, Y Campidelli, C Hernandez and D Bensahel 29th European Solid-State Device Research Conference 304 (1999)Google Scholar
  3. [3]
    K Rim, S Koester, M Hargrove, J Chu, P M Mooney, J Ott, T Kanarsky, P Ronsheim, M Ieong, A Grill and H-S P Wong VLSI Symp. Tech. Dig. 59 (2001)Google Scholar
  4. [4]
    M Ieong, B Doris, J Kedzierski, K Rim and M Yang Science 306 2057 (2004)ADSCrossRefGoogle Scholar
  5. [5]
    R Kuchipudi and H Mahmoodi Electron. Des. 6 (2007)Google Scholar
  6. [6]
    V Venkataraman, S Nawal and M J Kumar IEEE Trans. Electron Devices 54 554 (2007)ADSCrossRefGoogle Scholar
  7. [7]
    J Kumar, V Venkataraman and S Nawal J. Comput. Electron. 6 439 (2007)CrossRefGoogle Scholar
  8. [8]
    K Kalna, A Martinez, A Svizhenko, M P Anantram, J R Barker and A Asenov J. Comput. Electron. 7 288 (2008)CrossRefGoogle Scholar
  9. [9]
    T Krishnamohan, C Jungemann, D Kim, E Ungersboeck, S Selberherr, P Wong, Y Nishi and K Saraswat Int. Electron Devices Meet. 1 (2006)Google Scholar
  10. [10]
    T Krishnamohan, D Kim, T V Dinh, A T Pham, B Meinerzhagen, C Jungemann and K Saraswat Int. Electron Devices Meet. 1 (2008)Google Scholar
  11. [11]
    H Fitriawan, M Ogawa, S Souma and T Miyoshi Phys. stat. sol. (c) 5 74 (2008)CrossRefGoogle Scholar
  12. [12]
    L Hong-Xia, L Jin, L Bin, L Cao and Y Bo Chin. Phys. B 20 017301 (2011)Google Scholar
  13. [13]
    L Jin, L Hongxia, Y Bo, C Lei and L Bin J. Semicond. 32, 44005 (2011)CrossRefGoogle Scholar
  14. [14]
    M Kumar, S Dubey, P K Tiwari and S Jit J. Comput. Electron. 12 20 (2013)CrossRefGoogle Scholar
  15. [15]
    W Long, H Ou, J-M Kuo and K K Chin IEEE Trans. Electron Devices 46 865 (1999)ADSCrossRefGoogle Scholar
  16. [16]
    P K Tiwari, S Dubey, M Singh and S Jit J. Appl. Phys. 108 074508 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    S S Mahato et al. 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2008)Google Scholar
  18. [18]
    N Sharan and A K Rana Int. J. VLSI Des. Commun. Syst. 2 61 (2011)CrossRefGoogle Scholar
  19. [19]
    M Saxena, S Haldar, M Gupta and R S Gupta Solid-State Electron. 48 1169 (2004)ADSCrossRefGoogle Scholar
  20. [20]
    M J Kumar and A Chaudhry IEEE Trans. Electron Devices 51 569 (2004)ADSCrossRefGoogle Scholar
  21. [21]
    X Zhou and W Long IEEE Trans. Electron Devices. 45 2546 (1998)ADSCrossRefGoogle Scholar
  22. [22]
    M J Kumar, V Venkataraman and S Nawal IEEE Trans. Electron Devices. 53 2500 (2006)ADSCrossRefGoogle Scholar
  23. [23]
    L Jin, L Hongxia, L Bin, C Lei and B Yuan J. Semicond. 31 084008 (2010)ADSCrossRefGoogle Scholar
  24. [24]
    J Welser, J L Hoyt and J F Gibbons Int. Electron Devices Meet. 1000 (1992)Google Scholar
  25. [25]
    L L Minjoo, E A Fitzgerald, M T Bulsara, M T Currie and A Lochtefeld J. Appl. Phys. 97 011101 (2005)ADSCrossRefGoogle Scholar
  26. [26]
    G Zhang, Z Shao and K Zhou IEEE Trans. Electron Devices 55 803 (2008)ADSCrossRefGoogle Scholar
  27. [27]
    P K Tiwari and S Jit Journal of Electron Devices 7 241 (2010)Google Scholar
  28. [28]
    G Rawat, E Goel, S Kumar, M Kumar, S Dubey and S Jit J. Nanoelectron. Optoelectron. 9 442 (2014)CrossRefGoogle Scholar
  29. [29]
    K K Young IEEE Trans. Electron Devices 36 399 (1989)ADSCrossRefGoogle Scholar
  30. [30]
    A Dasgupta and S K Lahiri IEEE Trans. Electron Devices 35 390 (1988)ADSCrossRefGoogle Scholar
  31. [31]
    S Dubey, P K Tiwari, and S Jit J. Appl. Phys. 108 034518 (2010)ADSCrossRefGoogle Scholar
  32. [32]
    H A E Hamid, J R Guitart and B Iñíguez IEEE Trans. Electron Devices 54 1402 (2007)ADSCrossRefGoogle Scholar
  33. [33]
    ATLAS, ATLAS User Manual: Silvaco International, Santa Clara, CA (2015)Google Scholar
  34. [34]
    K Rim et al. IEEE Int. Electron Devices Meeting 49 (2003)Google Scholar
  35. [35]
    T A Langdo et al. Solid-State Electron. 48 1357 (2004)Google Scholar
  36. [36]
    T A Langdo et al. Appl. Phys. Lett. 82 4256 (2003)Google Scholar
  37. [37]
    T S Drake et al. J. Electron. Mater. 32 972 (2003)Google Scholar
  38. [38]
    S Bhushan et al. J. Electron. Devices 15 1285 (2012)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations