Skip to main content
Log in

RMS and charge radii in a potential model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Dalgarno’s method of perturbation is used to solve the Schrodinger’s equation with the Cornell potential \(V(r)=-\frac{4\alpha _s}{3r}+br+c\). The short range and long range effect of the potential is incorporated in the same wave function by using two scales \(r^{S}\) and \(r^{L}\) as an integration limit. The results for bounds on r.m.s. radii of various heavy flavored mesons are reported.We have also showed the relation between r.m.s. and charge radius of mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F Halzen and A D Martin Quarks and Leptons: An Introductory Course in Modern Particle Physics (NewYork: Wiley) p 205 (1984)

    Google Scholar 

  2. P Gonzalez Phys. Rev. D 80 054010 (2009)

    Article  ADS  Google Scholar 

  3. S S Afonin Int . J. Mod. Phys. A 23 4205 (2008)

  4. M E Houssine and P Gonzalez Phys. Rev. Lett. A 101 232001 (2008)

    Article  Google Scholar 

  5. D K Choudhury and K K Pathak J. Phys.Conf. Ser. 481 012022 (2014)

    Article  ADS  Google Scholar 

  6. I J R Aitchison and J J Dudek Eur. J. Phys. 23 605 (2002)

    Article  MathSciNet  Google Scholar 

  7. D K Choudhury and N S Bordoloi Mod. Phys. Lett. A 24 443 (2009)

    Article  ADS  Google Scholar 

  8. B J Hazarika and D K Choudhury Braz. J. Phys. 41 159 (2011)

    Article  ADS  Google Scholar 

  9. S Roy and D K Choudhury Can. J. Phys. 91 34 (2013)

    Article  ADS  Google Scholar 

  10. A Dalgarno Stationary Perturbation Theory in Quantum theory I (NewYork: Academic) D R Bates (1961)

  11. A K Ghatak and S Lokanathan Quantum Mechanics: Theory and Applications, 5th edn. (India: Macmillan) p 460 (2004)

    Book  MATH  Google Scholar 

  12. N Akbar, B Masud and S Noor Eur .Phys. J. A 47 124 (2011)

    Article  ADS  Google Scholar 

  13. A M Yasser, G S Hassan and T A Nahool J. Mod. Phys. 5 1938 (2014)

    Article  ADS  Google Scholar 

  14. K U Can, G Erkol, M Oka, A Ozpineci and T T Takahashi Phys. Lett. B 719 103 (2013)

    Article  ADS  Google Scholar 

  15. D P Stanley and D Robson Phys. Rev. D 21 3180 (1980)

    Article  ADS  Google Scholar 

  16. S Flugge Practical Quantum Mechanics (New York: Springer) (1964)

    MATH  Google Scholar 

  17. N S Bordoloi and D K Chodhury Indian J. Phys. 82 779 (2008)

    Google Scholar 

  18. B J Hazarika and D K Choudhury Pramana J. Phys. 84 69 (2015)

    Article  ADS  Google Scholar 

  19. A K Likhoded, A V Luchinsky and S V Poslavsky Phys. Rev. D 91 114016 (2015)

    Article  ADS  Google Scholar 

  20. S Godfrey and N Isgur Phys. Rev. D 43 189 (1985)

    Article  ADS  Google Scholar 

  21. E Eichten et al.Phys. Rev. D 17 3090 (1978)

    Article  ADS  Google Scholar 

  22. J J Sakurai Advanced Quantum Mechanics (Massachusetts: Addison-Willey Publishing Company) p 128 (1986)

    Google Scholar 

  23. C Itzykson and J Zuber Quantum Field Theory (Singapore: International Student Edition, McGraw Hill) 79 (1986)

    Google Scholar 

  24. S Roy, D K Choudhury Mod. Phys. Lett. A 27 1250110 (2012)

    Article  ADS  Google Scholar 

  25. Abramowitz and Stegun Handbook of Mathematical Functions, 10th edn. (US: National Bureau of Standards) p 46 (1964)

    MATH  Google Scholar 

  26. G S Bali arXiv:hep-ph/0010032v1

  27. K K Pathak and D K Choudhury Pramana J. Phys. 79 1385 (2012)

    Article  ADS  Google Scholar 

  28. K K Pathak and D K Choudhury Int. J. Mod. Phys. A 28 1350097(2013)

    Article  ADS  Google Scholar 

  29. K K Pathak, D K Choudhury and N S Bordoloi Int. J. Mod. Phys. A 28 1350010 (2013)

    Article  ADS  Google Scholar 

  30. F Karsch, M T Mehr and H Satz Z .Phys. C 37 617 (1988)

    Article  ADS  Google Scholar 

  31. B Liu, P N Shen and H C Chiang Phys. Rev. C 55 3021 (1997)

    Article  ADS  Google Scholar 

  32. T Das arXiv:1408.6139v1 [quant-ph]

  33. D Scora and N Isgur Phys. Rev. D 52 2783 (1995)

    Article  ADS  Google Scholar 

  34. R L Lombard and J Mares Phys. Lett. B 472 150 (2000)

    Article  ADS  Google Scholar 

  35. C W Hwang Eur. Phys. J. C 23 585 (2002)

  36. H Choi, C R Ji and Z Li arXiv:1502.03078 [hep-ph]

  37. D Ebert, R N Faustov and V O Galkin Eur. Phys. J. C 71 1825 (2011)

    Article  ADS  Google Scholar 

  38. D Bettoni arXiv:0710.5664 [hep-ex]

Download references

Acknowledgments

One of the authors (TD) acknowledges the support of University Grants Commission in terms of fellowship under BSR scheme to pursue research work at Gauhati University, Department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapashi Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Choudhury, D.K. & Pathak, K.K. RMS and charge radii in a potential model. Indian J Phys 90, 1307–1312 (2016). https://doi.org/10.1007/s12648-016-0866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0866-1

Keywords

PACS Nos.

Navigation