Skip to main content
Log in

Sensitive measurement of nonlinear absorption and optical limiting in undoped and Fe-doped ZnO quantum dots using pulsed laser

  • Short Research Communication
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Zinc oxide quantum dots (QDs) with Fe-doping at different concentrations were prepared by chemical co-precipitation method. The prepared QDs were characterized by UV–Vis spectroscopy, X-ray diffraction and Z-scan technique. The sizes of QDs were found to be within 4.6–6.6 nm range. The nonlinear parameters viz. two-photon absorption coefficient (βTPA) and two-photon absorption cross-section (σTPA) were extracted with the help of open aperture Z-scan technique using nanosecond Nd:YAG laser operating at wavelength 532 nm. Higher values of βTPA and σTPA for Fe doped ZnO implied that they were potential materials for development of photonics devices and sensor protection applications. Fe doped sample (3 % by wt) was found to be the best optical limiter with limiting threshold intensity of 0.64 TW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. K Vanheusden, W L Warren, C H Seager, D R Tallant, J A Voight and B E Gnade J. Appl. Phys. 79 7983–7990 (1996)

    Article  ADS  Google Scholar 

  2. Z K Tang et al Appl. Phys. Lett. 72 3270–3272 (1998)

    Article  ADS  Google Scholar 

  3. D M Bagnall et al Appl. Phys. Lett. 70 (17) 2230–2232 (1997)

    Article  ADS  Google Scholar 

  4. J Hu, L S Li, W Yang, L Manna, L W Wang and A P Alivisatos Science 292 (5524) 2060–2063 (2001)

    Article  Google Scholar 

  5. H Wu, X Peng and A P Alivisators Adv. Mater. 11 923–927 (1999)

    Article  Google Scholar 

  6. W Lee, H I Yoo and J K Lee Chem. Commun. 24 2530–2531 (2001)

    Article  Google Scholar 

  7. A P Alivisatos J. Phys. Chem. 100 31 13226–13239 (1996)

    Article  Google Scholar 

  8. L Guo, J X Cheng, X Y Li, Y J Yan, S H. Yang, C L Yang Mater. Sci. Eng. C. 16 123–127 (2001)

    Article  Google Scholar 

  9. R Q Song, A W Xu, B Deng, Q Li and G Y Chen Adv. Funct. Mater. 17 296–306 (2007)

    Article  Google Scholar 

  10. G Q Ding, W Z Shen, M J Zheng and D H Fan Appl. Phys. Lett. 88 103106 (2006)

    Article  ADS  Google Scholar 

  11. X D Wang, C J Summers and Z LWang Adv. Mater. 16 1215 (2004)

    Article  Google Scholar 

  12. L Irimpan, V P N Nampoori, P Radhakrishnan, B Krishnan and A Deepthy J. Appl. Phys. 103 033105 (2008)

    Article  ADS  Google Scholar 

  13. L Irimpan, V P N Nampoori and P Radhakrishnan Chem. Phys. Lett. 455 265–269 (2008)

    Article  ADS  Google Scholar 

  14. H W Lee, K M Lee, S Lee, K H Koh, J Y Park, K Kim and F Rotermund Chem. Phys. Lett. 447 86–90 (2007)

    Article  ADS  Google Scholar 

  15. B S Reddy, S V Reddy, N K Reddy and Y P Reddy Adv. Mater. Lett. 5(4) 199–205 (2014)

    Article  Google Scholar 

  16. A Firdous, D Singh and M M Ahmad Appl. Nanosci. 3 13–18 (2013)

    Article  ADS  Google Scholar 

  17. D Sharma, BP Malik, A Gaur J. Opt. 17(1–7): 045502 (2015)

    Article  ADS  Google Scholar 

  18. L Xu and X Li J Cryst Growth 312 851–855 (2010)

    Article  ADS  Google Scholar 

  19. C Wang, Z Chen and Y He Appl. Surf. Sci 255 15 6881–6887 (2009)

    Article  ADS  Google Scholar 

  20. B Cullity Elements of X-ray diffraction, 2nd edn. (Redding: Addison-Wesley) (1978)

    MATH  Google Scholar 

  21. LE Brus J. Chem. Phys. 80 4403–4410 (1984)

    Article  ADS  Google Scholar 

  22. L W Wang and A Zunger Phys. Rev. B 53(15) 9579–9582 (1996)

    Article  ADS  Google Scholar 

  23. M Sheikh Bahae et al IEEE J. Quantum Electron 26 760–769 (1990)

    Article  ADS  Google Scholar 

  24. L M Wang, J W Liao, Z A Peng and J H Lai J. Electrochem. Soc. 156 2 H138–H142 (2009)

    Article  Google Scholar 

  25. R W Boyd Nonlinear Optics, 2nd edn, (New York: Academic) (2003)

    Google Scholar 

  26. T Pradeep and A Ashok Reddy A Text Book of Nanoscience and Nanotechnology (New York: Tata McGraw Hill) Chap-6 (2012)

  27. V V Nikesh, A Dharmadhikari, H Ono, S Nozaki, G R Kumar and S Mahamuni Appl. Phys. Lett. 84(23) 4602–4604 (2009)

    Article  ADS  Google Scholar 

  28. T Kataoka, T Tokizaki and A Nakamura Phys. Rev. B 48 2815 (R) (1993)

  29. S Creekmore et al Limiting applications J. Korean Phy. Soc. 43 S143–S148 (2003)

    Google Scholar 

  30. K Jamshidi-Ghaleshy and N Mansour J. Phys. D: Appl. Phys. 40 366 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grant Commission (UGC), India for giving minor research project and providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Malik, B.P. & Gaur, A. Sensitive measurement of nonlinear absorption and optical limiting in undoped and Fe-doped ZnO quantum dots using pulsed laser. Indian J Phys 90, 1293–1298 (2016). https://doi.org/10.1007/s12648-016-0837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0837-6

Keywords

PACS Nos.

Navigation