Skip to main content
Log in

Effect of built-in-polarization field on relaxation time and mean free path of phonons in InxGa1-xN/GaN quantum well

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The built-in-polarization field at the interface of InxGa1-xN/GaN quantum well enhances the elastic constant, phonon velocity and Debye temperature of InxGa1-xN alloy and their respective bowing constants. As a result, the phonon scattering processes in InxGa1-xN are modified. The combined phonon relaxation time and phonon mean free path has been computed for with and without built-in-polarization field for different indium (In) contents at room temperature. Our result shows that the built-in-polarization field suppresses the scattering mechanisms and enhances the phonon relaxation time and mean free path. The result is used to determine the effect of built-in-polarization field on electrical and thermal properties of InxGa1-xN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H Morkoc Nitride Semiconductor Devices (Germany: Wiley) (2013)

    Book  Google Scholar 

  2. H Morkoc Handbook of Nitride Semiconductors and Devices (Germany: Wiley) (2008)

    Book  Google Scholar 

  3. J Piprek Nitride Semiconductor Devices: Principles and simulation, (Germany: Wiley) (2007)

    Book  Google Scholar 

  4. E F Schubert Light Emitting Diodes, (New York: Cambridge University Press) (2006)

    Book  Google Scholar 

  5. J Wu J. Appl. Phys. 106 011101 (2009)

    Article  ADS  Google Scholar 

  6. S Nakamura and G Fasol The Blue Laser Diode: The Complete Story (Berlin: Springer) (2000)

    Book  Google Scholar 

  7. F K Yam and Z Hassan, Superlattices Microstructures 43 1 (2008)

    Article  ADS  Google Scholar 

  8. Y Wu, Yih-Yin Lin, H Huang and J Singh J. Appl. Phys. 105 013117 (2009)

    Article  ADS  Google Scholar 

  9. S Nakmura Science 281 956 (1998)

    Article  Google Scholar 

  10. S Nakamura, M Senoh, and T Mukai Appl. Phys. Lett. 62 2390 (1993)

    Article  ADS  Google Scholar 

  11. H Zhao et al. Optic Express 19 147902 (2011)

    Google Scholar 

  12. Shih-Wei Feng et al. Optical Mater Express 3 1777 (2013)

    Article  Google Scholar 

  13. Shih-Wei Feng et al. J. Appl. Phys. 108 093118 (2010)

    Article  ADS  Google Scholar 

  14. G F Brown et al. Solar Energy Materials & Solar Cells 94 478 (2010)

    Article  Google Scholar 

  15. H Zhang et al. Appl. Phys. Lett. 84 4644 (2004)

    Article  ADS  Google Scholar 

  16. R Schmidt et al. 0-7803-7418-5/02/© 2002 IEEE (2002)

  17. O Ambacher et al. J. Appl. Phys. 87 334(2000)

    Article  ADS  Google Scholar 

  18. O Ambacher et al J. Phys.: Condens. Matter 14 3399 (2002)

    ADS  Google Scholar 

  19. C Wood and D Jena Polarization Effects in Semiconductors: From Ab InitioTheory to Device Applications (New York: Springer) (2000)

    Google Scholar 

  20. S De et al. Appl. Phys. Lett. 101 121919 (2012)

    Article  ADS  Google Scholar 

  21. E P Pokatilov, D L Nika and A A Balandin Appl. Phys. Lett. 89 112110 (2006)

    Article  ADS  Google Scholar 

  22. E P Pokatilov, D L Nika and A A Balandin Appl. Phys. Lett. 89 113508 (2006)

    Article  ADS  Google Scholar 

  23. F Bernardini, V Fiorentini and O Ambacher Appl. Phys. Lett. 80 1204 (2002)

    ADS  Google Scholar 

  24. F Bernardini and V Fiorentini Phys. Rev. B 64 08520 (2001)

    Article  Google Scholar 

  25. J Yan, Y Zhang, P Kim and A Pinczuk Phys. Rev. Lett. 98 166802 (2007)

    Article  ADS  Google Scholar 

  26. Z Q Li et al. Nature Physics 4 532(2008)

    Article  Google Scholar 

  27. E H Hwang and S Das Sarma Phys. Rev. B 77 115449 (2008)

    Article  ADS  Google Scholar 

  28. D A Siegel, C Hwang, A V Fedorov and A Lanzara New J. Phys. 14 95006 (2012)

    Google Scholar 

  29. S Tanaka, M Matsunami and S Kimura Scientific Reports 3 3031(2013)

    ADS  Google Scholar 

  30. G Verzellesi et al. J. Appl. Phys. 114 071101(2013)

    Article  ADS  Google Scholar 

  31. W Liu and A A Balandin J. Appl .Phys. 97 123705 (2005)

    Google Scholar 

  32. A Sztein, J E Bowers, S P DenBaars and S Nakamura J. Appl. Phys. 113 183707 (2013)

    Article  ADS  Google Scholar 

  33. A Sztein, J E Bowers, S P DenBaars and S Nakamura Appl. Phys. Lett. 113 183707 (2013)

    Google Scholar 

  34. A Sztein, J E Bowers, S P DenBaars and S Nakamura Appl. Phys. Lett. 104 042106 (2014)

    Article  ADS  Google Scholar 

  35. M Balkanski and R F Wallis Semiconductor Physics and Application (New York: Oxford Univ Press) (2000)

    Google Scholar 

  36. B K Sahoo J. Mat. Sc. 47 2624 (2012)

    Google Scholar 

  37. S K Sahoo, B K Sahoo and S Sahoo J. Appl. Phys. 114 163501 (2013)

    ADS  Google Scholar 

  38. W Liu and A A Balandin J. Appl. Phys. 97 073710 (2005)

    Google Scholar 

  39. J Zou and A A Balandin J. Appl. Phys. 89 2932 (2001)

    Google Scholar 

  40. P G Klemen (Chem. and Phys. of Nanostructures and Related Non equilibrium materials) (Minerals, Metals, and Materials Society, Warrendale, PA) ed. E. Ma, B. Fultz, R. Shall, J. Morral, and P. Nash (1997)

  41. D I Florescu, V M Asnin, F H Pollak, R J Molnar and C E C Wood J. Appl. Phys. 88 3295 (2000)

    Article  ADS  Google Scholar 

  42. A Pansari, V Gedam and B K Sahoo Physica B 456 66 (2015)

    Google Scholar 

  43. V Gedam, A Pansari and B K Sahoo J. Electr. Mater. 44 1035 (2015)

    Article  Google Scholar 

  44. A X Levander et al. Appl. Phys. Lett. 98 012108 (2011)

    Article  ADS  Google Scholar 

  45. D Kotchetkov, J Zou, A A Balandin, D I Florescu and F H Pollak Appl. Phys. Lett. 79 4316 (2001)

    Article  ADS  Google Scholar 

  46. S Krukowski et al. J. Phys. Chem. Solids 59 289 (1998)

    Article  ADS  Google Scholar 

  47. G A Slack, L J Schowalter, D Morelli and J A Freitas Jr. J. Cryst. Growth 246 287 (2002)

    Article  ADS  Google Scholar 

  48. J Zou, D Kotchetkov, A A Balandin, D I Florescu, and F H Pollak J. Appl. Phys. 92 2534 (2002)

    Google Scholar 

  49. B N Pantha, R Dahal, J Li, J Y Lin, and H X Jiang, G Pomrenke Appl. Phys. Lett. 92 042112 (2008)

    Article  ADS  Google Scholar 

  50. T Tong et al. Appl. Phys. Lett. 102 121906 (2013)

    Article  ADS  Google Scholar 

  51. C Shi, P M Asbeck and E T Yu Appl. Phys. Lett. 74 573 (1999)

    Article  ADS  Google Scholar 

  52. J Piprek, R Farrell, S DenBaars and S Nakamura, IEEE Photonics Technology Letters 18 1041 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

V. G thanks University Grant Commission, New Delhi, India for providing financial support to carry out research work at National Institute of Technology, Raipur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedam, V., Pansari, A. & Sahoo, B.K. Effect of built-in-polarization field on relaxation time and mean free path of phonons in InxGa1-xN/GaN quantum well. Indian J Phys 90, 991–997 (2016). https://doi.org/10.1007/s12648-016-0836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0836-7

Keywords

PACS Nos.

Navigation