Skip to main content
Log in

Electronic structure, mechanical, and optical properties of CaO·Al2O3 system: a first principles approach

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A comprehensive study of the structure, bonding, mechanical and optical properties of five stable phases within the calcium aluminate (Ca–Al–O) series with different CaO to Al2O3 proportions has been carried out using the density functional theory based orthogonalized linear combination of atomic orbitals (OLCAO) method. The phases are C3A, C12A7-crystal, CA, CA2, and CA6 and the oxygen deficient C12A7-electride phase. These five stable phases are wide band gap insulators with energy gap values ranging from 3.85 to 4.62 eV. The charge neutral C12A7-crystal has localized defective states in the gap whereas the C12A7-electride phase has a region of metallic bands of about 2 eV wide in the gap. Effective charge and bond order calculations reveal intimate details of electronic structure and bonding in relation to the aluminate contents in the series. It is shown that Al–O bonds dominate the Ca–O bonds in determining the crystal strength with CA6 having the highest and C12A7 having the lowest bond order density. Calculations of elastic coefficients and mechanical properties in these crystals show a high degree of diversity and anisotropic behavior consistent with the bond order calculations. The refractive index values from optical properties calculations are in good agreement with available literature. Other results furnish more insights for the Ca–Al–O series and provide the opportunity for further investigations on similar or more complicated quaternary systems with potential novel properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y Wang and S Diamond Mater. Res. Soc. Symp. Proc. 370 23 (1995)

    Article  Google Scholar 

  2. D Sohn and T O Mason J. Adv. Cem. Based Mater. 7 81 (1998)

    Article  Google Scholar 

  3. L M Schwartz, E J Garboczi and D P Bentz J. Appl. Phys. 78 5898 (1995)

    Article  ADS  Google Scholar 

  4. H F W Taylor Cement Chemistry, 2nd edn. (UK: Thomas Telford) vol 19 (1990)

  5. H C Yi, J Y Guigne, J J Moore, F D Schowengerdt, L A Robinson and A R Manerbino J. Mater. Sci. 37 4537 (2002)

    Article  ADS  Google Scholar 

  6. J E Medvedeva, E N Teasley and M D Hoffman Phys. Rev. B Condens. Matter Mater. Phys. 76 155107 (2007)

    Article  ADS  Google Scholar 

  7. H Manzano, J S Dolado and A Ayuela J. Am. Ceram. Soc. 92 897 (2009)

    Article  Google Scholar 

  8. K Velez, S Maximilien, D Damidot, G Fantozzi and F Sorrentino Cem. Concr. Res. 31 555 (2001)

    Article  Google Scholar 

  9. J Moon, S Yoon, R M Wentzcovitch, S M Clark and P J M Monteiro J. Am. Ceram. Soc. 95 2972 (2012)

    Article  Google Scholar 

  10. K Hayashi, S Matsuishi, T Kamiya, M Hirano and H Hosono Nature 419 462 (2002)

    Article  ADS  Google Scholar 

  11. M Ruszak, M Inger, S Witkowski, M Wilk, A Kotarba and Z Sojka Catal. Lett. 126 72 (2008)

    Article  Google Scholar 

  12. S W Kim et al. Nano Lett. 7 1138 (2007)

    Article  ADS  Google Scholar 

  13. J A McLeod et al. Phys. Rev. B Condens. Matter Mater. Phys. 85 045204 (2012)

    Article  ADS  Google Scholar 

  14. P V Sushko, A L Shluger, Y Toda, M Hirano and H Hosono Proc. R. Soc. A 1 1 (2011)

    Google Scholar 

  15. J Akola et al. PNAS Early Edition 1 1 (2013)

    Google Scholar 

  16. S W Kim, T Shimoyama and H Hosono Science 333 71 (2011)

    Article  ADS  Google Scholar 

  17. S Jonas, F Nadachowski and D Szwagierczak Ceram. Int. 25 77 (1999)

    Article  Google Scholar 

  18. M K Cinibulk and R S Hay J. Am. Ceram. Soc. 79 1233 (1996)

    Article  Google Scholar 

  19. W Y Ching and P Rulis Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals (UK: Oxford University Press) vol 1 (2012)

  20. G Kresse and J Hafner Phys. Rev. B Condens. Matter Mater. Phys. 47 558 (1993)

    Article  ADS  Google Scholar 

  21. G Kresse and J Furthmüller Comput. Mater. Sci. 6 15 (1996)

    Article  Google Scholar 

  22. A Hussain, S Aryal, P Rulis, M A Choudhry, J Chen and W Y Ching J. Alloys Compd. 509 5230 (2011)

    Article  Google Scholar 

  23. C C Dharmawardhana, A Misra, S Aryal, P Rulis and W Y Ching Cem. Concr. Res. 52 123 (2013)

    Article  Google Scholar 

  24. W Y Ching, Y Mo, S Aryal and P Rulis J. Am. Ceram. Soc. 96 2292 (2013)

    Article  Google Scholar 

  25. N Li, R Sakidja, S Aryal and W Y Ching Phys. Chem. Chem. Phys. 16 1500 (2014)

    Article  Google Scholar 

  26. V L Burdick and D E Day J. Am. Ceram. Soc. 50 97 (1967)

    Article  Google Scholar 

  27. P Mondal and W Jeffery Acta Crystallogr. 31 689 (1975)

    Article  Google Scholar 

  28. M Collepardi, G Baldini and M Pauri Cem. Concr. Res. 8 571 (1978)

    Article  Google Scholar 

  29. H Bartl and T Scheller Mineral. Monatsh. 35 547 (1970)

    Google Scholar 

  30. H Boysen, M Lerch, A Stys and A Senyshym Acta Crystallogr. B63 675 (2007)

    Article  Google Scholar 

  31. W Horkner and H K Muller-Buschbaum J. Inorg. Nuclear Chem. 38 983 (1976)

    Article  Google Scholar 

  32. B Tavisci Tonindustrie-Zeitung 61 717 (1937)

  33. V K Lagerqvist, S Wallmark and A Westgren Zeitschrift Für Anorganische und Allgemeine Chemie 234 1 (1937)

    Article  Google Scholar 

  34. J R Goldsmith J. Geol. 56 80 (1948)

    Article  ADS  Google Scholar 

  35. C Goria and A Burdese La Ricerca Scientifica 21 1613 (1951)

    Google Scholar 

  36. N E Filonenko and I V Lavrov J. Appl. Chem. (USSR) 23 1040 (1950)

    Google Scholar 

  37. E R Boyko and L G Wisnyi Acta Crystallogr. 11 444 (1958)

    Article  Google Scholar 

  38. B Cockayne and D S Robertson Solid State Commun. 2 359 (1964)

    Article  ADS  Google Scholar 

  39. D W Goodwin and A J Lindop Acta Crystallogr. B26 1230 (1970)

    Article  Google Scholar 

  40. A Utsunomiya, K Tanaka, H Morikawa, F Marumo and H Kojima J. Solid State Chem. 75 197 (1988)

    Article  ADS  Google Scholar 

  41. P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  42. W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  43. A Hussain, S Aryal, P Rulis, M A Choudhry and W Y Ching Phys. Rev. B Condens. Matter Mater. Phys. 78 195102 (2008)

    Article  ADS  Google Scholar 

  44. Y Mo, P Rulis and W Y Ching Phys. Rev. B 86 165122 (2012)

    Article  ADS  Google Scholar 

  45. W Y Ching, P Rulis, L Ouyang, S Aryal and A Misra Phys. Rev. B 81 214120 (2010)

    Article  ADS  Google Scholar 

  46. R S Mulliken J. Chem. Phys. 23 1841 (1955)

    Article  ADS  Google Scholar 

  47. H Yao, L Ouyang and W Y Ching J. Am. Ceram. Soc. 90 3194 (2007)

    Article  Google Scholar 

  48. W Voigt Lehrbuch der Kristallphysik (Germany: L Berlin and B G Teubner) (1928)

  49. A Reuss Z. Angew. Math. Mech. 9 49 (1929)

    Article  Google Scholar 

  50. R Hill Proc. Phys. Soc. A 65 349 (1952)

    Article  ADS  Google Scholar 

  51. C C Dharmawardhana, R Sakidja, S Aryal and W Y Ching APL Materials 1 012106 (2013)

    Article  ADS  Google Scholar 

  52. R W Whatmore, C O Hara, B Cockayne and G R Jones Mater. Res. Bull. 14 967 (1979)

    Article  Google Scholar 

  53. T Nagaoka, S Kanzaki and Y. Yamaoka J. Mater. Sci. Lett. 9 219 (1990)

    Article  Google Scholar 

  54. Sample dispersion and refractive index guide Man 0079 Version 3.1 (United Kingdom: Malvern Instruments Ltd.) 1.24 (1997)

  55. http://en.wikipedia.org/wiki/Mayenite

  56. L G Hwa, C C Chen and S. L. Hwang Chin. J. Phys. 35 78 (1997)

    Google Scholar 

  57. G N Mohanty Ph.D. Thesis (University of Missouri, USA) (1954)

Download references

Acknowledgments

This work was supported by U.S. DOE Grant No. DE-FG02-84DR45170 and later in part by NSF Grant CMMI-1068528. This research used the resources of NERSC supported by the Office of Science of DOE under the contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Mehmood, S., Rasool, M.N. et al. Electronic structure, mechanical, and optical properties of CaO·Al2O3 system: a first principles approach. Indian J Phys 90, 917–929 (2016). https://doi.org/10.1007/s12648-015-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0830-5

Keywords

PACS Nos.

Navigation