Skip to main content
Log in

Theoretical study of phase stability, structural, magnetic, mechanical and thermal behavior of gadolinium-based intermetallic compounds in cubic AuCu3 structure

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The phase stability, structural, magnetic, electronic, mechanical and thermal properties of cubic GdX3 (X = In, Sn, Tl and Pb) rare earth intermetallics, which crystallize in AuCu3-type structure, have been investigated using first-principles density functional theory based on full-potential linearized augmented plane wave method. The calculations are carried out within local spin approximation and local spin approximation along with Hubbard term for the exchange correlation potential in order to obtain the appropriate results. The computed lattice parameters using local spin approximation along with Hubbard term are in good agreement with the experimental results. It is lucid from the magnetic stability curves that all these studied compounds are magnetic in nature. The electronic band structures as well as density of states reveal that the studied compounds show metallic behavior under ambient conditions. The results of cohesive energy indicate that these compounds are stable in AuCu3 phase at ambient conditions and that the stability of GdSn3 is the strongest among the investigated cubic GdX3 compounds. We, for the first time, predict the second-order elastic constants for these compounds. All these GdX3 compounds, except GdIn3, are found to be ductile in nature in accordance with Pugh’s criteria. Poisson’s ratio, Young’s modulus, shear modulus, anisotropy factor, average sound velocities, density and Debye temperature of these GdX3 compounds are also estimated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S J Asadabadi, S Cottenier, H Akbarzadeh, R Saki and M. Rots Phys. Rev. B 66 195103 (2002)

    Article  ADS  Google Scholar 

  2. S A Wolf et al. Science 294 1488 (2001)

    Article  ADS  Google Scholar 

  3. G M Muller et al. Nature Mater. 8 56 (2009)

    Article  ADS  Google Scholar 

  4. T Iizuka, T Mizuno, B H Min, Y S Kwon and S Kimura J. Phys. Soc. Japan 81 043703 (2012)

    Article  ADS  Google Scholar 

  5. P K Jha and S P Sanyal Phys. Rev. B 52 15898 (1995)

    Article  ADS  Google Scholar 

  6. P K Jha and S P Sanyal Phys. B Condens. Matter 216 125 (1995)

    Article  ADS  Google Scholar 

  7. S D Gupta, S K Gupta and P K Jha Comput. Mater. Sci. 49 910 (2010)

  8. J A Abraham, G Pagare, S S Chouhan and S P Sanyal Intermetallics 51 1 (2014)

  9. M Kwiecien, G Chelkowska and A Betlinska Mater. Sci.-Poland 25 2 (2007)

    Google Scholar 

  10. J Feng et al. Acta Mater. 59 1742 (2011)

    Article  Google Scholar 

  11. B Coqblin The Electronic Structure of Rare Earth Metals and Alloys (New York: Academic Press) (1977)

  12. J C Van Dongen et al Phys. Rev. B 27(3) 1887 (1983)

    Article  ADS  Google Scholar 

  13. G Pagare, P Soni, V Srivastava and S P Sanyal J. Phys. Chem. Solids 70 650 (2009)

  14. Z Kletowski, A Czopnik, A Tal and F R de Boer Phys. B 281&282 163 (2000)

    Google Scholar 

  15. Z Kletowski Solid State Commun. 81 297 (1992)

    Article  ADS  Google Scholar 

  16. G E Grechnev, A S Panfilov, I V Svechkarev, K H J Buschow and A Czopnik J. Alloys Comp. 226 107 (1995)

    Article  Google Scholar 

  17. S J Asadabadi and H Akbarzadeh Phys. B 349 76 (2004)

    Article  ADS  Google Scholar 

  18. M P J Punkkinen, K Kokko and I J Vayrynen J. Alloys Comp. 350 5 (2003)

    Article  Google Scholar 

  19. K H J Buschow, H W de Wijn and A M van Diepen J. Chem. Phys. 50 137 (1969)

    Article  ADS  Google Scholar 

  20. D J Singh and L Nordstrom Plane Waves Pseudo Potentials and the LAPW Method (New York: Springer) (2006)

    Google Scholar 

  21. P Blaha, K Schwarz, G K H Madsen, D Kuasnicka and J Luitz WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties K. Schwarz Technical Universitat Wien Austria. ISBN: 3-9501031-1-2 (2001)

  22. V I Anisimov and O Gunnarsson Phys. Rev. B 43 7570 (1991)

    Article  ADS  Google Scholar 

  23. V I Anisimov, I V Solovyev, M A Korotin, M T Czyzyk and G A Sawatzky Phys. Rev. B 48 16929 (1993)

    Article  ADS  Google Scholar 

  24. Z Sun, S Li, R Ahuja and J M Schneider Solid State Commun. 129 589 (2004)

    Article  ADS  Google Scholar 

  25. C Jasiukiewicz and V Karpus Solid State Commun. 128 167 (2003)

    Article  ADS  Google Scholar 

  26. P Wachter, M Filzmoser and J Rebizant Phys. B 293 199 (2001)

    Article  ADS  Google Scholar 

  27. F Birch J. Appl. Phys. 9 279 (1938)

    Article  ADS  Google Scholar 

  28. A Landelli and A Palenzona Handbook on the Physics and Chemistry of Rare Earths (Amsterdam: North-Holland) p 2 (1979)

  29. D W Zhou, P Peng and J S Liu J. Alloys Compd. 428 316 (2007)

    Article  Google Scholar 

  30. L W Roeland et al. J. Phys. F Met. Phys. 5 L233 (1975)

    Article  ADS  Google Scholar 

  31. W M Temmerman and P A Sterne J. Phys. Condens. Matter 2 5529 (1990)

    Article  ADS  Google Scholar 

  32. M J Pang, Y Z Zhang, M X Ling, S J Wei, Y Liu and Y Du Solid State Commun. 151 1135 (2011)

    Article  ADS  Google Scholar 

  33. H Z Wang, Y Z Zhan, M J Pang and Y Du Solid State Commun. 151 1814 (2011)

    Article  ADS  Google Scholar 

  34. V Mankad, N Rathod, S D Gupta, S K Gupta and P K Jha Mater. Chem. Phys. 129 816 (2011)

  35. J A Abraham, G Pagare, S S Chouhan and S P Sanyal Computat. Mater. Sci. 81 423 (2014)

  36. J A Abraham, G Pagare, S S Chouhan and S P Sanyal J. Mater. Sci. 50 542 (2015)

  37. S S Chouhan, G Pagare, M Rajagopalan and S P Sanyal J. Solid State Sci. 14 1004 (2012)

  38. R. Hill Proc. Phys. Soc. Lond. A 65 349 (1952)

  39. W Voigt Ann. Phys. 38 573 (1889)

    Article  MathSciNet  Google Scholar 

  40. A Reuss and Z. Angew Math. Phys. 9 49 (1929)

  41. C H Jenkins and S K Khanna A Modern Integration of Mechanics and Materials in Structural Design. Mechanics of Materials. ISBN: 0-12-383852-5 62-72 (2005)

  42. W Feng et al. Phys. B 405 4294 (2010)

    Article  ADS  Google Scholar 

  43. S F Pugh Phil. Mag. Ser. 45 823 (1954)

  44. J B Levine, S H Tolbert and R B Kaner Adv. Funct. Mater. 19 3519 (2009)

    Article  Google Scholar 

  45. J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Res. 3 11 (2001)

    Google Scholar 

  46. D G Pettifor Mater. Sci. Technol. 8 345 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to MPCST for the financial support for Major Research Project. The authors are also thankful to Dr. Sunil Singh Chouhan for his valuable assistance and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pagare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagare, G., Abraham, J.A. & Sanyal, S.P. Theoretical study of phase stability, structural, magnetic, mechanical and thermal behavior of gadolinium-based intermetallic compounds in cubic AuCu3 structure. Indian J Phys 90, 57–65 (2016). https://doi.org/10.1007/s12648-015-0729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0729-1

Keywords

PACS Nos.

Navigation