Skip to main content
Log in

Effect of correlation in FitzHugh–Nagumo model with non-Gaussian noise and multiplicative signal

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of correlation in FitzHugh–Nagumo neural model induced by non-Gaussian noise and multiplicative signal is studied. Based on the corresponding Fokker–Planck equation, the explicit expressions of the stationary probability distribution function, the mean first passage time and signal-to-noise ratio are obtained, respectively. By analyzing the influence of different parameters, we observe that the system undergoes a succession of phase transition-like phenomena as correlation strength λ, correlation time τ and multiplicative noise intensity D are increased. And the mean first passage time exhibits a maximum, which identifies the noise-enhanced stability effect when correlation strength λ < 0. Furthermore, inhibition phenomenon and double stochastic resonance occur in FitzHugh–Nagumo neural model under different values of system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R FitzhHugh J. Gen. Physiol. 43 867 (1960)

    Article  Google Scholar 

  2. A S Pikovsky and J Kurths Phys. Rev. Lett. 78 78775 (1997)

    Article  MathSciNet  Google Scholar 

  3. VA Makarov, V I Nekorkin and M G Velarde Phys. Rev. Lett. 86 3431 (2001)

    Article  ADS  Google Scholar 

  4. B Lindner, J Garcia-Ojalvo, A Neiman, L Schimansky-Geier Phys. Rep. 392 32 (2004)

    Article  Google Scholar 

  5. Evgeniya V Pankratova, A V Polovinkin and B Spagnolo Phys. Lett. A 344 43 (2005)

  6. K Wiesenfeld, D Pantazelou, C Dames and F Moss Phys. Rev. Lett. 72 2125 (1994)

    Article  ADS  Google Scholar 

  7. C H Kurrer and K Schulten Phys. Rev. E 51 6214 (1995)

    Article  ADS  Google Scholar 

  8. A A Dubkov and B Spagnolo Phys. Rev. E 72 041101 (2005)

  9. D Valenti, G Augello and B Spagnolo Eur. Phys. J. B 65 443 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. B Lindner and L Schimansky-Geier Phys. Rev. E 60 7270 (1999)

    Article  ADS  Google Scholar 

  11. R Toral, C R Mirasso and J D Gunton Europhys. Lett. 61 162 (2003)

    Article  ADS  Google Scholar 

  12. D Wu and S Q Zhu Phys. Lett. A 372 5299 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. D Nozaki and Y Yamamoto Phys. Lett. A 243 281 (1998)

    Article  ADS  Google Scholar 

  14. C J Tessone and H S Wio Phys. A 374 46 (2007)

    Article  Google Scholar 

  15. S M Bezrukov and I Vodyanoy Nature 385 319 (1997)

    Article  ADS  Google Scholar 

  16. I Goychuk and P Hanggi Phys. Rev. E 61 4272 (2000)

    Article  ADS  Google Scholar 

  17. Y Zhao, W Xu and S C Sou Acta Phys. Sin. 58 1396 (2009)

    Google Scholar 

  18. J J Zhang and Y F Jin Acta Phys. Sin. 61 13 (2012)

    Google Scholar 

  19. A Fiasconaro and B Spagnolo Phys. Rev. E 80 041110 (2009)

  20. R N Mantegna and B Spagnolo Nuovo Cimento D 17 873 (1995)

    Article  ADS  Google Scholar 

  21. X L Li and L J Ning Indian J. Phys. 89 189 (2015)

  22. T Alarcon, A Perez-Madid, J M Rubi Phys. Rev. E 57 4979 (1998)

    Article  ADS  Google Scholar 

  23. L Borland Phys. Lett. A 245 67 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. M A Fuentes, R Toral and H S Wio Phys. A 295 114 (2001)

    Article  Google Scholar 

  25. G Hu Stochastic Force and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) (1944)

  26. P Hanggi, F Marchesoni and P Grigolini Z. Phys. B 56 333 (1984)

    Article  ADS  Google Scholar 

  27. R F Fox Phys. Rev. A 33 467 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y Jia, S N Yu and J R Li Phys. Rev. E 62 1869 (2000)

    Article  ADS  Google Scholar 

  29. Q Liu and Y Jia Phys. Rev. E 70 041907 (2004)

    Article  ADS  Google Scholar 

  30. S Bouzat and H S Wio Phys. Rev. E 59 5142 (1999)

    Article  ADS  Google Scholar 

  31. H S Wio and S Bouzat Braz. J. Phys. 29 136 (1999)

    Article  ADS  Google Scholar 

  32. B Spagnolo et al. Acta Phys. Pol. B 38 1925 (2007)

    ADS  Google Scholar 

  33. N V Agudov and B Spagnolo Phys. Rev. E 64 035102 (2001)

    Article  ADS  Google Scholar 

  34. A A Dubkov, N V Agudov and B Spagnolo Phys. Rev. E 69 061103 (2004)

    Article  ADS  Google Scholar 

  35. R N Mantegna and B Spagnolo Phys. Rev. Lett. 76 563 (1996)

    Article  ADS  Google Scholar 

  36. H A Kramers Physica 7 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  37. P Hanggi, P Talkner and M Borkovec Rev. Mod. Phys. 62 251 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  38. Z L Jia and D C Mei Chin. J. Phys. 49 6 (2011)

    Google Scholar 

  39. V Barzykin and K Seki Europhys. Lett. 57 6555 (1997)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant Nos. 11202120 and 61273311, the Fundamental Research Funds for the Central Universities under No. GK201502007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.L., Ning, L.J. Effect of correlation in FitzHugh–Nagumo model with non-Gaussian noise and multiplicative signal. Indian J Phys 90, 91–98 (2016). https://doi.org/10.1007/s12648-015-0717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0717-5

Keywords

PACS No.

Navigation