Skip to main content
Log in

Effect of quenching temperature and size on atom movement and local structural change for small copper clusters containing 51–54 atoms during quenching processes

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural changes are sensitive to the atom number for the small size clusters. However, it is hardly predicted for the effects of quenching temperature and contained atom number on the atom movements of these clusters with the modification of a removing or adding atom. In this paper, we demonstrate the formation of many topologically non-equivalent Cu clusters containing 51–54 atoms during quenching processes by means of atomistic simulations. By modifying annealing temperature, different pathways are observed. The simulation results show that the quenching temperature has large effect on the atom movements and the scenario of the formation and growth of local structures in the clusters is greatly different for the four clusters only with one atom difference. When the quenching temperature is high, most atoms in the clusters move individually. In the meantime, changes in the atom packing can be observed in these clusters. Low quenching temperature is helpful to slow down the atom movements and form the structures on icosahedral geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T L Beck, J Jellinek and R S Berry J. Chem. Phys. 87 545 (1987)

    Article  ADS  Google Scholar 

  2. F Ercolessi, W Andreoni and E Tosatti Phys. Rev. Lett. 66 911 (1991)

    Article  ADS  Google Scholar 

  3. A Sebetci and Z B Guvenc Modelling Simul. Mater. Sci. Eng. 12 1131 (2004)

    Article  ADS  Google Scholar 

  4. W Polak Phys. Rev. E 77 031404 (2008)

    Article  ADS  Google Scholar 

  5. H Iwai, T Umeki, M Yokomatsu and C Egawa Surf. Sci. 602 2541 (2008)

    Article  ADS  Google Scholar 

  6. A Rapallo et. al. J. Chem. Phys. 122 194308 (2005)

    Article  ADS  Google Scholar 

  7. C H Christensen and J K Norskov Science 327 278 (2010)

    Article  ADS  Google Scholar 

  8. P Sharma, S Das, P M Badani and R K Vatsa Indian J. Phys. 86, 195 (2012)

    Article  ADS  Google Scholar 

  9. G J Hutchings, M Brust and H Schmidbaur Chem. Soc. Rev. 37 1759 (2008)

    Article  Google Scholar 

  10. K Saha, S S Agasti, C Kim, X N Li and V M Rotello Chem. Rev. 112 2739 (2012)

    Article  Google Scholar 

  11. R Ferrando, J Jellinek and R L Johnston Chem. Rev. 108 845 (2008)

    Article  Google Scholar 

  12. F Baletto and R Ferrando Rev. Mod. Phys. 77 371 (2005)

    Article  ADS  Google Scholar 

  13. A S Barnard Rep. Prog. Phys. 73 086502 (2010)

    Article  ADS  Google Scholar 

  14. H B Liu, J A Ascencio, M P Alvarez and M J Yacaman Surf. Sci. 491 88 (2001)

    Article  ADS  Google Scholar 

  15. Y G Chushak and L S Bartell J. Phys. Chem. B 105 11605 (2001)

    Article  Google Scholar 

  16. E K Yildirim and Z B Guvenç Modelling Simul. Mater. Sci. Eng. 14 947 (2006)

    Article  ADS  Google Scholar 

  17. C Desgranges and J Delhommelle J. Phys. Chem. C 113 3607 (2009)

    Article  Google Scholar 

  18. S Valkealahti and M Manninen J. Phys. Condens. Mater. 9 4041 (1997)

  19. S N Xu, L Zhang, Y Qi and CB Zhang Physica B 405 632 (2010)

    Article  ADS  Google Scholar 

  20. C Desgranges and J Delhommelle J. Am. Chem. Soc. 128 15104 (2006)

    Article  Google Scholar 

  21. C Desgranges and J Delhommelle Phys. Rev. Lett. 98 235502 (2007)

    Article  ADS  Google Scholar 

  22. T Ikeshoji and K Koga Phys. Rev. E 63 031101 (2001)

    Article  ADS  Google Scholar 

  23. R G Chaudhuri and S Paria Chem. Rev. 112 2373 (2012)

    Article  Google Scholar 

  24. F Baletto, A Rapallo, G Rossi and R Ferrando Phys. Rev. B 69 235421 (2004)

    Article  ADS  Google Scholar 

  25. F Baletto, C Mottet and R Ferrando Chem. Phys. Lett. 354 82 (2002)

    Article  ADS  Google Scholar 

  26. G Rossi and R Ferrando Nanotechnology 18 225706 (2007)

    Article  ADS  Google Scholar 

  27. L Zhang and H X Sun Solid State Commun. 149 1722 (2009)

    Article  ADS  Google Scholar 

  28. L Zhang and Q N Fan J. Phys. Soc. Jpn. 82 054601 (2013)

    Article  ADS  Google Scholar 

  29. L J Lewis, P Jensen and J L Barrat Phys. Rev. B 56 2248 (1997)

    Article  ADS  Google Scholar 

  30. L Zhang and Q N Fan Physica Script 84 045303 (2011)

    Article  ADS  Google Scholar 

  31. L Zhang, S N Xu, C B Zhang and Y Qi Comput. Mater. Sci. 47 162 (2009)

    Article  Google Scholar 

  32. S N Charaborty, S Talapatra and C Chakravarty Indian J. Phys. 83 65 (2009)

  33. L Zhang and W Li Comput. Mater. Sci. 51 91 (2012)

    Article  Google Scholar 

  34. A A Dzhurakhalov and M Hou Phys. Rev. B 76 045429 (2007)

    Article  ADS  Google Scholar 

  35. M G Del Popolo, E P M Leiva and W Schmickler J. Electoana. Chem. 518 84 (2002)

    Article  Google Scholar 

  36. H Lei Phys. Rev. B 39 12554 (2002)

    Google Scholar 

  37. C L Bracey, P R Ellis and G J Hutchings Chem. Soc. Rev. 38 2231 (2009)

    Article  Google Scholar 

  38. W Yoo and C Li Tetrahedron Lett. 48 1033 (2007)

    Article  Google Scholar 

  39. L Zhang, C B Zhang and Y Qi Phys. Lett. A 372 2874 (2008)

    Article  ADS  Google Scholar 

  40. L Zhang and H X Sun Phys. Status Solidi A 207 1178 (2010)

    Article  ADS  Google Scholar 

  41. J Mei, J W Davenport and G W Fernado Phys. Rev. B 43 4653 (1991)

    Article  ADS  Google Scholar 

  42. W Kob and H C Andersen Phys. Rev. B 22 4 (1995)

    Google Scholar 

  43. H Pang, Z H Jin and K Lu Phys. Rev. B 67 094113 (2003)

    Article  ADS  Google Scholar 

  44. J D Honeycutt and H C Andersen J. Phys. Chem. 91 4950 (1987)

    Article  Google Scholar 

  45. A S Clarke and H Jonsson Phys. Rev. E 47 3975 (1993)

    Article  ADS  Google Scholar 

  46. D Schebarchov and S C Hendy J. Chem. Phys. 123 104701 (2005)

    Article  ADS  Google Scholar 

  47. W Polak Euro. Phy. J. D 40 231 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Basic Research Program of China (No. 2011CB606403), the Fundamental Research Funds for the Central Universities (Grant No. N140504001) and the National Natural Science Foundation of China (No. 51171044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Fan, Q.N. Effect of quenching temperature and size on atom movement and local structural change for small copper clusters containing 51–54 atoms during quenching processes. Indian J Phys 90, 9–20 (2016). https://doi.org/10.1007/s12648-015-0702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0702-z

Keywords

PACS Nos.

Navigation